Skip to main content

Advertisement

Log in

Internalization and retrograde axonal trafficking of tetanus toxin in motor neurons and trans-synaptic propagation at central synapses exceed those of its C-terminal-binding fragments

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

An Erratum to this article was published on 21 March 2015

Abstract

The prominent tropism of tetanus toxin (TeTx) towards peripheral nerves with retrograde transport and transfer to central neurons render it an invaluable probe for exploring fundamental neuronal processes such as endocytosis, retrograde trafficking and trans-synaptic transport to central neurons. While the specificity of TeTx to nerve cells has been attributed to its binding domains (HC and HCC), molecular determinants of the long-range trafficking that ensure its central delivery and induction of spastic paralysis remain elusive. Here, we report that a protease-inactive TeTx mutant (TeTIM) fused to core streptavidin (CS) proved superior to CS-HC and CS-HCC fragments in antagonizing the internalization of the active toxin in cultured spinal cord neurons. Also, in comparison to CS-HC and CS-HCC, CS-TeTIM undergoes faster clearance from motor nerve terminals after peripheral injection, and is detected in a greater number of neurons in the spinal cord and brain stem ipsi-lateral to the administration site. Consistent with trans-synaptic transfer from motor neurons to inter-neurons, CS-TeTIM infiltrated non-cholinergic cells in the spinal cord; in contrast, the retrograde spread of CS-HC was largely restricted to neurons stained for choline acetyltransferase. Peripheral injection of CS-TeTIM conjugated to a lentivirus encoding mutated SNAP-25, resistant to cleavage by botulinum neurotoxin A, E and C1, rendered spontaneous excitatory postsynaptic currents in motor neurons resilient to challenge by type A toxin in vitro, whereas the same virus conjugated to CS-HC proved ineffective. These findings indicate that full-length inactive TeTx greatly exceeds HC and HCC in targeting and invading motor nerve terminals at the periphery and exploits more efficiently the retrograde transport and trans-synaptic transfer mechanisms of motor neurons to arrive at central neurons. Such qualities render TeTIM a more suitable research probe and neuron-targeting vehicle for retro-axonal delivery of viral vectors to the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beaude P, Delacour A, Bizzini B, Domuado D, Remy MH (1990) Retrograde axonal transport of an exogenous enzyme covalently linked to B-IIb fragment of tetanus toxin. Biochem J 271:87–91

    PubMed Central  CAS  PubMed  Google Scholar 

  • Benecke R, Takano K, Schmidt J, Henatsch HD (1977) Tetanus toxin induced actions on spinal Renshaw cells and Ia-inhibitory interneurones during development of local tetanus in the cat. Exp Brain Res 27:271–286

    CAS  PubMed  Google Scholar 

  • Bergey GK, MacDonald RL, Habig WH, Hardegree MC, Nelson PG (1983) Tetanus toxin: convulsant action on mouse spinal cord neurons in culture. J Neurosci 3:2310–2323

    CAS  PubMed  Google Scholar 

  • Bizzini B, Akert K, Glicksman M, Grob P (1980) Preparation of conjugates using two tetanus toxin derived fragments: their binding to gangliosides and isolated synaptic membranes and their immunological properties. Toxicon 18:561–572

    Article  CAS  PubMed  Google Scholar 

  • Bleck TP (1989) Clinical aspects of tetanus. Academic Press, New York

    Book  Google Scholar 

  • Blum FC, Chen C, Kroken AR, Barbieri JT (2012) Tetanus toxin and botulinum toxin a utilize unique mechanisms to enter neurons of the central nervous system. Infect Immun 80:1662–1669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blum FC, Chen C, Kroken AR, Barbieri JT (2014) Tetanus toxin and botulinum toxin a utilize unique mechanisms to enter neurons of the central nervous system. Infect Immun 80:1662–1669

    Article  Google Scholar 

  • Brooks VB, Curtis DR, Eccles JC (1957) The action of tetanus toxin on the inhibition of motoneurones. J Physiol 135:655–672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brunger AT, Rummel A (2009) Receptor and substrate interactions of clostridial neurotoxins. Toxicon 54:550–560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coen L, Osta R, Maury M, Brulet P (1997) Construction of hybrid proteins that migrate retrogradely and transynaptically into the central nervous system. Proc Natl Acad Sci USA 94:9400–9405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Craven CJ, Dawson DJ (1973) The chain composition of tetanus toxin. Biochim Biophys Acta 317:277–285

    Article  CAS  PubMed  Google Scholar 

  • Cullheim S, Kellerth JO, Conradi S (1977) Evidence for direct synaptic interconnections between cat spinal alpha-motoneurons via the recurrent axon collaterals: a morphological study using intracellular injection of horseradish peroxidase. Brain Res 132:1–10

    Article  CAS  PubMed  Google Scholar 

  • Curtis DR (1959) Pharmacological investigations upon inhibition of spinal motoneurones. J Physiol 145:175–192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Curtis DR, Felix D, Game CJ, McCulloch RM (1973) Tetanus toxin and the synaptic release of GABA. Brain Res 51:358–362

    Article  CAS  PubMed  Google Scholar 

  • Dobrenis K, Joseph A, Rattazzi MC (1992) Neuronal lysosomal enzyme replacement using fragment C of tetanus toxin. Proc Natl Acad Sci USA 89:2297–2301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, Janz R, Chapman ER (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312:592–596

    Article  CAS  PubMed  Google Scholar 

  • Eccles JC (1964) The Physiology of synapses. Springer, Berlin

    Book  Google Scholar 

  • Eccles JC, Fatt P, Koketsu K (1954) Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J Physiol 126:524–562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Emsley P, Fotinou C, Black I, Fairweather NF, Charles IG, Watts C, Hewitt E, Isaacs NW (2000) The structures of the H(C) fragment of tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding. J Biol Chem 275:8889–8894

    Article  CAS  PubMed  Google Scholar 

  • Faber K (1890) Pathogenie des Tetanus. Berl Klin Wochenshr 27:710–717

    Google Scholar 

  • Fasshauer D, Margittai M (2004) A transient N-terminal interaction of SNAP-25 and syntaxin nucleates SNARE assembly. J Biol Chem 279:7613–7621

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo DM, Hallewell RA, Chen LL, Fairweather NF, Dougan G, Savitt JM, Parks DA, Fishman PS (1997) Delivery of recombinant tetanus-superoxide dismutase proteins to central nervous system neurons by retrograde axonal transport. Exp Neurol 145:546–554

    Article  CAS  PubMed  Google Scholar 

  • Fischer A, Mushrush DJ, Lacy DB, Montal M (2008) Botulinum neurotoxin devoid of receptor binding domain translocates active protease. PLoS Pathog 4:e1000245

    Article  PubMed Central  PubMed  Google Scholar 

  • Fishman P (2009) Tetanus toxin. Elsevier, Philadelphia

    Book  Google Scholar 

  • Fishman PS, Carrigan DR (1988) Motoneuron uptake from the circulation of the binding fragment of tetanus toxin. Arch Neurol 45:558–561

    Article  CAS  PubMed  Google Scholar 

  • Fishman PS, Savitt JM (1989) Transsynaptic transfer of retrogradely transported tetanus protein-peroxidase conjugates. Exp Neurol 106:197–203

    Article  CAS  PubMed  Google Scholar 

  • Fishman PS, Savitt JM, Farrand DA (1990) Enhanced CNS uptake of systemically administered proteins through conjugation with tetanus C-fragment. J Neurol Sci 98:311–325

    Article  CAS  PubMed  Google Scholar 

  • Fishman PS, Parks DA, Patwardhan AJ, Matthews CC (1999) Neuronal binding of tetanus toxin compared to its ganglioside binding fragment (H(c)). Nat Toxins 7:151–156

    Article  CAS  PubMed  Google Scholar 

  • Francis JW, Ren J, Warren L, Brown RH Jr, Finklestein SP (1997) Postischemic infusion of Cu/Zn superoxide dismutase or SOD:Tet451 reduces cerebral infarction following focal ischemia/reperfusion in rats. Exp Neurol 146:435–443

    Article  CAS  PubMed  Google Scholar 

  • Francis JW, Brown RH Jr, Figueiredo D, Remington MP, Castillo O, Schwarzschild MA, Fishman PS, Murphy JR, vander Spek JC (2000) Enhancement of diphtheria toxin potency by replacement of the receptor binding domain with tetanus toxin C-fragment: a potential vector for delivering heterologous proteins to neurons. J Neurochem 74:2528–2536

    Article  CAS  PubMed  Google Scholar 

  • Herreros J, Lalli G, Montecucco C, Schiavo G (2000) Tetanus toxin fragment C binds to a protein present in neuronal cell lines and motoneurons. J Neurochem 74:1941–1950

    Article  CAS  PubMed  Google Scholar 

  • Herreros J, Ng T, Schiavo G (2001) Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. Mol Biol Cell 12:2947–2960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koticha DK, McCarthy EE, Baldini G (2002) Plasma membrane targeting of SNAP-25 increases its local concentration and is necessary for SNARE complex formation and regulated exocytosis. J Cell Sci 115:3341–3351

    CAS  PubMed  Google Scholar 

  • Lalli G, Bohnert S, Deinhardt K, Verastegui C, Schiavo G (2003) The journey of tetanus and botulinum neurotoxins in neurons. Trends Microbiol 11:431–437

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Foran P, Lawrence G, Mohammed N, Chan-Kwo-Chion CK, Lisk G, Aoki R, Dolly O (2001) Recombinant forms of tetanus toxin engineered for examining and exploiting neuronal trafficking pathways. J Biol Chem 276:31394–31401

    Article  CAS  PubMed  Google Scholar 

  • Lin RC, Scheller RH (1997) Structural organization of the synaptic exocytosis core complex. Neuron 19:1087–1094

    Article  CAS  PubMed  Google Scholar 

  • Louch HA, Buczko ES, Woody MA, Venable RM, Vann WF (2002) Identification of a binding site for ganglioside on the receptor binding domain of tetanus toxin. Biochemistry 41:13644–13652

    Article  CAS  PubMed  Google Scholar 

  • Montecucco C, Rossetto O, Schiavo G (2004) Presynaptic receptor arrays for clostridial neurotoxins. Trends Microbiol 12:442–446

    Article  CAS  PubMed  Google Scholar 

  • Nishimaru H, Restrepo CE, Ryge J, Yanagawa Y, Kiehn O (2005) Mammalian motor neurons corelease glutamate and acetylcholine at central synapses. Proc Natl Acad Sci USA 102:5245–5249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Leary VB, Ovsepian SV, Raghunath A, Huo Q, Lawrence GW, Smith L, Dolly JO (2011) Innocuous full-length botulinum neurotoxin targets and promotes the expression of lentiviral vectors in central and autonomic neurons. Gene Ther 18:656–665

    Article  PubMed  Google Scholar 

  • O’Leary VB, Ovsepian SV, Bodeker M, Dolly JO (2013) Improved lentiviral transduction of ALS motoneurons in vivo via dual targeting. Mol Pharm 10:4195–4206

    Article  PubMed  Google Scholar 

  • O’Sullivan GA, Mohammed N, Foran PG, Lawrence GW, Oliver Dolly J (1999) Rescue of exocytosis in botulinum toxin A-poisoned chromaffin cells by expression of cleavage-resistant SNAP-25. Identification of the minimal essential C-terminal residues. J Biol Chem 274:36897–36904

    Article  PubMed  Google Scholar 

  • Otto H, Hanson PI, Jahn R (1997) Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. Proc Natl Acad Sci USA 94:6197–6201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perreault MC, Bernier AP, Renaud JS, Roux S, Glover JC (2006) C fragment of tetanus toxin hybrid proteins evaluated for muscle-specific transsynaptic mapping of spinal motor circuitry in the newborn mouse. Neuroscience 141:803–816

    Article  CAS  PubMed  Google Scholar 

  • Raghunath A, Perez-Branguli F, Smith L, Dolly JO (2008) Adeno-associated virus transfer of a gene encoding SNAP-25 resistant to botulinum toxin A attenuates neuromuscular paralysis associated with botulism. J Neurosci 28:3683–3688

    Article  CAS  PubMed  Google Scholar 

  • Rossetto O, Seveso M, Caccin P, Schiavo G, Montecucco C (2001) Tetanus and botulinum neurotoxins: turning bad guys into good by research. Toxicon 39:27–41

    Article  CAS  PubMed  Google Scholar 

  • Schiavo G, Ferrari G, Rossetto O, Montecucco C (1991) Tetanus toxin receptor. Specific cross-linking of tetanus toxin to a protein of NGF-differentiated PC 12 cells. FEBS Lett 290:227–230

    Article  CAS  PubMed  Google Scholar 

  • Schiavo G, Benfenati F, Poulain B, Rossetto O, de Laureto Polverino P, DasGupta BR, Montecucco C (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835

    Article  CAS  PubMed  Google Scholar 

  • Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766

    CAS  PubMed  Google Scholar 

  • Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–353

    Article  CAS  PubMed  Google Scholar 

  • Toivonen JM, Olivan S, Osta R (2010) Tetanus toxin C-fragment: the courier and the cure? Toxins (Basel) 2:2622–2644

    Article  CAS  Google Scholar 

  • Turton K, Chaddock JA, Acharya KR (2002) Botulinum and tetanus neurotoxins: structure, function and therapeutic utility. Trends Biochem Sci 27:552–558

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zurawski TH, Meng J, Lawrence GW, Aoki KR, Wheeler L, Dolly JO (2012) Novel chimeras of botulinum and tetanus neurotoxins yield insights into their distinct sites of neuroparalysis. Faseb J 26:5035–5048

    Article  CAS  PubMed  Google Scholar 

  • Weller U, Taylor CF, Habermann E (1986) Quantitative comparison between tetanus toxin, some fragments and toxoid for binding and axonal transport in the rat. Toxicon 24:1055–1063

    Article  CAS  PubMed  Google Scholar 

  • Yeh FL, Dong M, Yao J, Tepp WH, Lin G, Johnson EA, Chapman ER (2010) SV2 mediates entry of tetanus neurotoxin into central neurons. PLoS Pathog 6:e1001207

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Research Professorship plus Principal Investigator award to Prof. J. O. Dolly from Science Foundation Ireland and Programme for Research in Third Level Institutions (PRTLI) Cycle 4 from the Higher Education Authority of Ireland for the Neuroscience section of Target-Driven Therapeutics and Theranostics (Dr. Saak Ovsepian and Prof. J. Oliver Dolly).

Conflict of interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saak V. Ovespian.

Additional information

S. V. Ovespian and M. Bodeker equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovespian, S.V., Bodeker, M., O’Leary, V.B. et al. Internalization and retrograde axonal trafficking of tetanus toxin in motor neurons and trans-synaptic propagation at central synapses exceed those of its C-terminal-binding fragments. Brain Struct Funct 220, 1825–1838 (2015). https://doi.org/10.1007/s00429-015-1004-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1004-0

Keywords

Navigation