Skip to main content

Advertisement

Log in

Genetically induced impairment of retinal ganglion cells at the axonal level is linked to extrastriate cortical plasticity

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Leber hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial disorder, which leads to initially silent visual loss due to retinal ganglion cell (RGC) degeneration. We aimed to establish a link between features of retinal progressive impairment and putative cortical changes in a cohort of 15 asymptomatic patients harboring the 11778G>A mutation with preserved visual acuity and normal ocular examination. To study plasticity evoked by clinically silent degeneration of RGC we only studied mutation carriers. We phenotyped pre-clinical silent degeneration from the psychophysical, neurophysiological and structural points of view to understand whether retinal measures could be related to cortical reorganization, using pattern electrophysiology, chromatic contrast sensitivity and high-resolution optical coherence tomography to measure macular, RGC nerve fiber layer as well as inner/outer retinal layer thickness. We then performed correlation analysis of these measures with cortical thickness estimates in functionally mapped retinotopic visual cortex. We found that compensatory cortical plasticity occurring in V2/V3 is predicted by the swelling (indicating deficits of axonal transport and intracellular edema) of the macular RGC axonal layer. Increased cortical thickness (CT) in V2 and V3 was observed in peripheral regions, like visual field loss, in these mutation carriers. CT was a very discriminative measure between carriers and controls, as revealed by ROC analysis. Importantly, the substantial cortical reorganization that occurs in the carrier state can be used to provide statistical discrimination between carriers and controls to a level that is similar to measures of retinal dysfunction. We conclude that peripheral cortical compensatory plasticity in early visual areas V2/V3 may be triggered by pathology in peripheral RGC axons in combination with potential developmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aaker GD, Myung JS, Ehrlich JR, Mohammed M, Henchcliffe C, Kiss S (2010) Detection of retinal changes in Parkinson’s disease with spectral-domain optical coherence tomography. Clin Ophthalmol 4:1427–1432

    PubMed  PubMed Central  Google Scholar 

  • Bach M, Brigell MG, Hawlina M, Holder GE, Johnson MA, McCulloch DL, Meigen T, Viswanathan S (2013) ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol 126:1–7

    Article  PubMed  Google Scholar 

  • Barbiroli B, Montagna P, Cortelli P, Iotti S, Lodi R, Barboni P, Monari L, Lugaresi E, Frassineti C, Zaniol P (1995) Defective brain and muscle energy metabolismo shown by in vivo 31P magnetic resonance spectroscopy in nonaffected carriers of 11778 mtDNA mutation. Neurology 45:1364–1369

    Article  CAS  PubMed  Google Scholar 

  • Barboni P, Carbonelli M, Savini G, Ramos C, Carta A, Berezovsky A, Salomao SR, Carelli V, Sadun A (2010) Natural history of Leber’s hereditary optic neuropathy: longitudinal analysis of the retinal nerve fiber layer by optical coherence tomography. Ophthalmology 117:623–627

    Article  PubMed  Google Scholar 

  • Barcella V, Rocca MA, Bianchi-Marzoli S, Milesi J, Melzi L, Falini A, Pierro L, Filippi M (2010) Evidence for retrochiasmatic tissue loss in Leber’s hereditary optic neuropathy. Hum Brain Mapp 31:1900–1906

    Article  PubMed  Google Scholar 

  • Carelli V, Ross-Cisneros FN, Sadun AA (2004) Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 23:53–89

    Article  CAS  PubMed  Google Scholar 

  • Carelli V, La Morgia C, Iommarini L, Carroccia R, Mattiazzi M, Sangiorgi S, Farne’ S, Maresca A, Foscarini B, Lanzi L, Amadori M, Bellan M, Valentino ML (2007) Mitochondrial optic neuropathies: how two genomes may kill the same cell type? Biosci Rep 27:173–184

    Article  CAS  PubMed  Google Scholar 

  • Chinnery PF, Johnson MA, Wardell TM, Singh-Kler R, Hayes C, Brown DT, Taylor RW, Bindoff LA, Turnbull DM (2000) The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol 48:188–193

    Article  CAS  PubMed  Google Scholar 

  • Cortelli P, Montagna P, Avoni P, Sangiorgi S, Bresolin N, Moggio M, Zaniol P, Mantovani V, Barboni P, Barbiroli B et al (1991) Leber’s hereditary optic neuropathy: genetic, biochemical, and phosphorus magnetic resonance spectroscopy study in an Italian family. Neurology 41:1211–1215

    Article  CAS  PubMed  Google Scholar 

  • d’Almeida OC, Mateus C, Reis A, Grazina MM, Castelo-Branco M (2013) Long term cortical plasticity in visual retinotopic areas in humans with silent retinal ganglion cell loss. Neuroimage 81:222–230

    Article  PubMed  Google Scholar 

  • DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    Article  CAS  PubMed  Google Scholar 

  • Engvig A, Fjell AM, Westlye LT, Moberget T, Sundseth O, Larsen VA, Walhovd KB (2010) Effects of memory training on cortical thickness in the elderly. Neuroimage 52:1667–1676

    Article  PubMed  Google Scholar 

  • Guy J, Feuer WJ, Porciatti V, Schiffman J, Abukhalil F, Vandenbroucke R, Rosa PR, Lam BL (2014) Retinal ganglion cell dysfunction in asymptomatic G11778A: Leber hereditary optic neuropathy. Invest Ophthalmol Vis Sci 55:841–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Zhu W, Shi F, Liu Y, Li J, Qin W, Li K, Yu C, Jiang T (2009) Thick visual cortex in the early blind. J Neurosci 29:2205–2211

    Article  CAS  PubMed  Google Scholar 

  • Jones SE, Buchbinder BR, Aharon I (2000) Three-dimensional mapping of cortical thickness using Laplace’s equation. Hum Brain Mapp 11:12–32

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Whishaw IQ (1998) Brain plasticity and behaviour. Annu Rev Psychol 49:43–64

    Article  CAS  PubMed  Google Scholar 

  • Laguna A, Barallobre MJ, Marchena MA, Mateus C, Ramírez E, Martínez-Cue C, Delabar JM, Castelo-Branco M, de la Villa P, Arbonés ML (2013) Triplication of DYRK1A causes structural and functional retina alterations in Down syndrome. Hum Mol Genet 22:2775–2784

    Article  CAS  PubMed  Google Scholar 

  • Lodi R, Carelli V, Cortelli P, Iotti S, Valentino ML, Barboni P, Pallotti F, Montagna P, Barbiroli B (2002) Phosphorus MR spectroscopy shows a tissue specific in vivo distribution of biochemical expression of the G3460A mutation in Leber’s hereditary optic neuropathy. J Neurol Neurosurg Psychiatry 72:805–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lövdén M, Bäckman L, Lindenberger U, Schaefer S, Schmiedek F (2010) A theoretical framework for the study of adult cognitive plasticity. Psychol Bull 136:659–676

    Article  PubMed  Google Scholar 

  • Lövdén M, Wenger E, Mårtensson J, Lindenberger U, Bäckman L (2013) Structural brain plasticity in adult learning and development. Neurosci Biobehav Rev 37:2296–2310

    Article  PubMed  Google Scholar 

  • Mackey DA, Oostra RJ, Rosenberg T, Nikoskelainen E, Bront-Stewart J, Poulton J, Harding AE, Govan G, Bolhuis PA, Norby S (1996) Primary pathogenic mtDNA mutations in multigeneration pedigrees with Leber hereditary optic neuropathy. Am J Hum Genet 59:481–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Man PY, Turnbull DM, Chinnery PF (2002) Leber hereditary optic neuropathy. J Med Genet 39:162–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins Rosa A, Silva MF, Ferreira S, Murta J, Castelo-Branco M (2013) Plasticity in the human visual córtex: an ophthalmology-based perspective. Biomed Res Int 2013:568354

    PubMed  Google Scholar 

  • Mateus C, Lemos R, Silva MF, Reis A, Fonseca P, Oliveiros B, Castelo-Branco M (2013) Aging of low and high level vision: from chromatic and achromatic contrast sensitivity to local and 3D object motion perception. PLoS One 8:e55348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales J, Weitzman ML, Gonzáles de la Rosa M (2000) Comparison between Tendency-Oriented Perimetry (TOP) and octopus threshold perimetry. Ophthalmology 107:134–142

    Article  CAS  PubMed  Google Scholar 

  • Newman NJ (2005) Hereditary optic neuropathies: from the mitochondria to the optic nerve. Am J Ophthalmol 140:517–523

    CAS  PubMed  Google Scholar 

  • Nikoskelainen E, Sogg RL, Rosenthal AR, Friberg TR, Dorfman LJ (1977) The early phase in Leber hereditary optic atrophy. Arch Ophthalmol 95:969–978

    Article  CAS  PubMed  Google Scholar 

  • Nikoskelainen EK, Huoponen K, Juvonen V, Lamminen T, Nummelin K, Savontaus ML (1996) Ophthalmologic findings in Leber hereditary optic neuropathy, with special reference to mtDNA mutations. Ophthalmology 103:504–514

    Article  CAS  PubMed  Google Scholar 

  • Noppeney U (2007) The effects of visual deprivation on functional and structural organization of the human brain. Neurosci Biobehav Rev 31:1169–1180

    Article  PubMed  Google Scholar 

  • Quiros PA, Torres RJ, Salomao S, Berezovsky A, Carelli V, Sherman J, Sadun F, De Negri A, Belfort R, Sadun AA (2006) Colour vision defects in asymptomatic carriers of the Leber’s hereditary optic neuropathy (LHON) mtDNA 11778 mutation from a large Brazilian LHON pedigree: a case-control study. Br J Ophthalmol 90:150–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis A, Mateus C, Viegas T, Florijn R, Bergen A, Silva E, Castelo-Branco M (2013) Physiological evidence for impairment in autosomal dominant optic atrophy at the pre-ganglion level. Graefes Arch Clin Exp Ophthalmol 251:221–234

    Article  PubMed  Google Scholar 

  • Rojas JC, Gonzalez-Lima F (2010) Mitochondrial optic neuropathy: in vivo model of neurodegeneration and neuroprotective strategies. Eye Brain 2:21–37

    Article  CAS  Google Scholar 

  • Sadun AA, Win PH, Ross-Cisneros FN, Walker SO, Carelli V (2000) Leber’s hereditary optic neuropathy differentially affects smaller axons in the optic nerve. Trans Am Ophthalmol Soc 98:223–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sadun AA, Salomao SR, Berezovsky A, Sadun F, DeNegri AM, Quiros PA, Chicani F, Ventura D, Barboni P, Sherman J, Sutter E, Belfort R Jr, Carelli V (2006) Subclinical carriers and conversions in Leber hereditary optic neuropathy: a prospective psychophysical study. Trans Am Ophthalmol Soc 104:51–61

    PubMed  PubMed Central  Google Scholar 

  • Savini G, Barboni P, Valentino ML, Montagna P, Cortelli P, De Negri AM, Sadun F, Bianchi S, Longanesi L, Zanini M, Carelli V (2005) Retinal nerve fiber layer evaluation by optical coherence tomography in unaffected carriers with Leber’s hereditary optic neuropathy mutations. Ophthalmology 112:127–131

    Article  PubMed  Google Scholar 

  • Sereno MI, McDonald CT, Allman JM (1994) Analysis of retinotopic maps in extrastriate cortex. Cereb Cortex 4:601–620

    Article  CAS  PubMed  Google Scholar 

  • Silva MF, Faria P, Regateiro FS, Forjaz V, Januário C, Freire A, Castelo-Branco M (2005) Independent patterns of damage within magno-, parvo- and koniocellular pathways in Parkinson’s disease. Brain 128:2260–2271

    Article  CAS  PubMed  Google Scholar 

  • Smith JL, Hoyt WF, Susac JO (1973) Ocular fundus in acute Leber optic neuropathy. Arch Ophthalmol 90:349–354

    Article  CAS  PubMed  Google Scholar 

  • Ventura DF, Gualtiere M, Oliveira AG, Costa MF, Quiros P, Sadun F, de Negri AM, Salomão SR, Berezovsky A, Sherman J, Sadun AA, Carelli V (2007) Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci 48:2362–2370

    Article  PubMed  Google Scholar 

  • Wandell BA, Smirnakis SM (2009) Plasticity and stability of visual field maps in adult primary visual cortex. Nat Rev Neurosci 10:873–884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF (2009) Inherited mitochondrial optic neuropathies. J Med Genet 46:145–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank LHON family, as well as all controls for their participation in this study. They also thank Carlos Ferreira and João Marques for helping with MRI scanning and Manuela Grazina and João Pratas for assistance in mtDNA analysis. This research was supported by Portuguese Foundation for Science and Technology Portugal [COMPETE] Strategic project Pest-C/SAU/UI3282/2011 and grants: SFRH/BD/64306/2009 (to CM), SFRH/BD/76013/2011 (to OCA); and also following grants: CENTRO-07-ST24-FEDER-00205, DoIT-Diamarker.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Castelo-Branco.

Additional information

C. Mateus and O. C. d’Almeida contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mateus, C., d’Almeida, O.C., Reis, A. et al. Genetically induced impairment of retinal ganglion cells at the axonal level is linked to extrastriate cortical plasticity. Brain Struct Funct 221, 1767–1780 (2016). https://doi.org/10.1007/s00429-015-1002-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1002-2

Keywords

Navigation