Skip to main content

Advertisement

Log in

Environmental enrichment rescues memory in mice deficient for the polysialytransferase ST8SiaIV

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The neural cell adhesion molecule NCAM and its association with the polysialic acid (PSA) are believed to contribute to brain structural plasticity that underlies memory formation. Indeed, the attachment of long chains of PSA to the glycoprotein NCAM down-regulates its adhesive properties by altering cell–cell interactions. In the brain, the biosynthesis of PSA is catalyzed by two polysialyltransferases, which are differentially regulated during lifespan. One of them, ST8SiaIV (PST), is predominantly expressed during adulthood whereas the other one, ST8SiaII (STX), dominates during embryonic and post-natal development. To understand the role played by ST8SiaIV during learning and memory and its underlying hippocampal plasticity, we used knockout mice deleted for the enzyme ST8SiaIV (PST-ko mice). At adult age, PST-ko mice show a drastic reduction of PSA-NCAM expression in the hippocampus and intact hippocampal adult neurogenesis. We found that these mice display impaired long-term but not short-term memory in both, spatial and non-spatial behavioral tasks. Remarkably, memory deficits of PST-ko mice were abolished by exposure to environmental enrichment that was also associated with an increased number of PSA-NCAM expressing new neurons in the dentate gyrus of these mice. Whether the presence of a larger pool of immature, likely plastic, new neurons favored the rescue of long-term memory in PST-ko mice remains to be determined. Our findings add new evidence to the role played by PSA in memory consolidation. They also suggest that PSA synthesized by PST critically controls the tempo of new neurons maturation in the adult hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angata K, Nakayama J, Fredette B et al (1997) Human STX polysialyltransferase forms the embryonic form of the neural cell adhesion molecule. J Biol Chem 272:7182–7190

    Article  CAS  PubMed  Google Scholar 

  • Angata K, Long JM, Bukalo O et al (2004) Sialyltransferase ST8Sia-II assembles a subset of polysialic acid that directs hippocampal axonal targeting and promotes fear behavior. J Biol Chem 279:32603–32613

    Article  CAS  PubMed  Google Scholar 

  • Barker GRI, Warburton EC (2011) When is the hippocampus involved in recognition memory? J Neurosci 31:10721–10731

    Article  CAS  PubMed  Google Scholar 

  • Becker CG, Artola A, Gerardy-Schahn R et al (1996) The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal long-term potentiation. J Neurosci Res 45:143–152

    Article  CAS  PubMed  Google Scholar 

  • Bonfanti L (2006) PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 80:129–164

    Article  CAS  PubMed  Google Scholar 

  • Bruel-Jungerman E, Laroche S, Rampon C (2005) New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur J Neurosci 21:513–521

    Article  PubMed  Google Scholar 

  • Calandreau L, Márquez C, Bisaz R et al (2010) Differential impact of polysialyltransferase ST8SiaII and ST8SiaIV knockout on social interaction and aggression. Genes Brain Behav 9:958–967

    Article  CAS  PubMed  Google Scholar 

  • Dityatev A, Schachner M (2003) Extracellular matrix molecules and synaptic plasticity. Nat Rev Neurosci 4:456–468

    Article  CAS  PubMed  Google Scholar 

  • Doyle E, Nolan PM, Bell R, Regan CM (1992) Intraventricular infusions of anti-neural cell adhesion molecules in a discrete posttraining period impair consolidation of a passive avoidance response in the rat. J Neurochem 59:1570–1573

    Article  CAS  PubMed  Google Scholar 

  • Dudai Y (2004) The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol 55:51–86

    Article  PubMed  Google Scholar 

  • Eckhardt M, Bukalo O, Chazal G et al (2000) Mice deficient in the polysialyltransferase ST8SiaIV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neural development and synaptic plasticity. J Neurosci 20:5234–5244

    CAS  PubMed  Google Scholar 

  • Ennaceur A, Neave N, Aggleton JP (1997) Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp Brain Res 113:509–519

    Article  CAS  PubMed  Google Scholar 

  • Florian C, Foltz J, Norreel J et al (2006) Post-training intrahippocampal injection of synthetic mimetic peptide improves spatial long-term performance in mice. Learn Mem 13:335–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foley AG, Hedigan K, Roullet P et al (2003) Consolidation of memory for odour-reward association requires transient polysialylation of the neural cell adhesion molecule in the rat hippocampal dentate gyrus. J Neurosci Res 74:570–576

    Article  CAS  PubMed  Google Scholar 

  • Gascon E, Vutskits L, Kiss JZ (2007) Polysialic acid-neural cell adhesion molecule in brain plasticity: from synapses to integration of new neurons. Brain Res Rev 56:101–118

    Article  CAS  PubMed  Google Scholar 

  • Goodman T, Trouche S, Massou I et al (2010) Young hippocampal neurons are critical for recent and remote spatial memory in adult mice. Neuroscience 171:769–778

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt H, Becker C, Mürau M, Gerardy-schahn R (1998) Heterogeneous expression of the polysialyltransferases ST8Sia II and ST8Sia IV during postnatal rat brain development. J Neurochem 71(6):2339–2348

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt H, Mühlenhoff M, Weinhold B, Gerardy-Schahn R (2007) Dissecting polysialic acid and NCAM functions in brain development. J Neurochem 103(Suppl):56–64

    Article  CAS  PubMed  Google Scholar 

  • Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495

    Article  CAS  PubMed  Google Scholar 

  • Knafo S, Barkai E, Herrero AI et al (2005) Olfactory learning-related NCAM expression is state, time, and location specific and is correlated with individual learning capabilities. Hippocampus 15:316–325

    Article  CAS  PubMed  Google Scholar 

  • Krezymon A, Richetin K, Halley H et al (2013) Modifications of hippocampal circuits and early disruption of adult neurogenesis in the tg2576 mouse model of Alzheimer’s disease. PLoS One 8:e76497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kröcher T, Malinovskaja K, Jürgenson M, et al. (2013) Schizophrenia-like phenotype of polysialyltransferase ST8SIA2-deficient mice. Brain Struct Funct. Epub

  • Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033

    CAS  PubMed  Google Scholar 

  • Laviola G, Hannan AJ, Macrì S et al (2008) Effects of enriched environment on animal models of neurodegenerative diseases and psychiatric disorders. Neurobiol Dis 31:159–168

    Article  PubMed  Google Scholar 

  • Lopez-Fernandez MA, Montaron M-F, Varea E et al (2007) Upregulation of polysialylated neural cell adhesion molecule in the dorsal hippocampus after contextual fear conditioning is involved in long-term memory formation. J Neurosci 27:4552–4561

    Article  CAS  PubMed  Google Scholar 

  • Manrique C, Migliorati M, Gilbert V et al (2014) Dynamic expression of the polysialyltransferase in adult rat hippocampus performing an olfactory associative task. Hippocampus 24:979–989

    Article  CAS  PubMed  Google Scholar 

  • Markram K, Gerardy-Schahn R, Sandi C (2007) Selective learning and memory impairments in mice deficient for polysialylated NCAM in adulthood. Neuroscience 144:788–796

    Article  CAS  PubMed  Google Scholar 

  • Merino JJ, Cordero MI, Sandi C (2000) Regulation of hippocampal cell adhesion molecules NCAM and L1 by contextual fear conditioning is dependent upon time and stressor intensity. Eur J Neurosci 12:3283–3290

    Article  CAS  PubMed  Google Scholar 

  • Mongiat L, Schinder AF (2011) Adult neurogenesis and the plasticity of the dentate gyrus network. Eur J Neurosci 33:1055–1061

    Article  PubMed  Google Scholar 

  • Morelli E, Ghiglieri V, Pendolino V et al (2014) Environmental enrichment restores CA1 hippocampal LTP and reduces severity of seizures in epileptic mice. Exp Neurol 261:320–327

    Article  PubMed  Google Scholar 

  • Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    Article  CAS  PubMed  Google Scholar 

  • Muller D, Wang C, Skibo G et al (1996) PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 17:413–422

    Article  CAS  PubMed  Google Scholar 

  • Mumby DG, Gaskin S, Glenn MJ et al (2002) Hippocampal damage and exploratory preferences in rats: memory for objects, places, and contexts. Learn Mem 9:49–57

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy KJ, Regan CM (1999) Sequential training in separate paradigms impairs second task consolidation and learning-associated modulations of hippocampal NCAM polysialylation. Neurobiol Learn Mem 72:28–38

    Article  CAS  PubMed  Google Scholar 

  • Murphy KJ, O’Connell AW, Regan CM (1996) Repetitive and transient increases in hippocampal neural cell adhesion molecule polysialylation state following multitrial spatial training. J Neurochem 67:1268–1274

    Article  CAS  PubMed  Google Scholar 

  • Nacher J, Guirado R, Varea E et al (2010) Divergent impact of the polysialyltransferases ST8SiaII and ST8SiaIV on polysialic acid expression in immature neurons and interneurons of the adult cerebral cortex. Neuroscience 167:825–837

    Article  CAS  PubMed  Google Scholar 

  • Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7:697–709

    Article  CAS  PubMed  Google Scholar 

  • Ong E, Nakayama J, Angata K et al (1998) Developmental regulation of polysialic acid synthesis in mouse directed by two polysialyltransferases, PST and STX. Glycobiology 8:415–424

    Article  CAS  PubMed  Google Scholar 

  • Rampon C, Tsien JZ (2000) Genetic analysis of learning behavior-induced structural plasticity. Hippocampus 10:605–609

    Article  CAS  PubMed  Google Scholar 

  • Roman FS, Truchet B, Chaillan FA et al (2004) Olfactory associative discrimination: a model for studying modifications of synaptic efficacy in neuronal networks supporting long-term memory. Rev Neurosci 15:1–17

    Article  PubMed  Google Scholar 

  • Rønn LC, Berezin V, Bock E (2000) The neural cell adhesion molecule in synaptic plasticity and ageing. Int J Dev Neurosci 18:193–199

    Article  PubMed  Google Scholar 

  • Roybon L, Hjalt T, Stott S et al (2009) Neurogenin2 directs granule neuroblast production and amplification while NeuroD1 specifies neuronal fate during hippocampal neurogenesis. PLoS One 4:e4779

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandi C, Merino JJ, Cordero MI et al (2003) Modulation of hippocampal NCAM polysialylation and spatial memory consolidation by fear conditioning. Biol Psychiatry 54:599–607

    Article  CAS  PubMed  Google Scholar 

  • Sandi C, Cordero MI, Merino JJ et al (2004) Neurobiological and endocrine correlates of individual differences in spatial learning ability. Learn Mem 11:244–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Sargolini F, Florian C, Oliverio A et al (2003) Differential involvement of NMDA and AMPA receptors within the nucleus accumbens in consolidation of information necessary for place navigation and guidance strategy of mice. Learn Mem 10:285–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429:184–187

    Article  CAS  PubMed  Google Scholar 

  • Schuster T, Krug M, Stalder M et al (2001) Immunoelectron microscopic localization of the neural recognition molecules L1, NCAM, and its isoform NCAM180, the NCAM-associated polysialic acid, beta1 integrin and the extracellular matrix molecule tenascin-R in synapses of the adult rat hippocampus. J Neurobiol 49:142–158

    Article  CAS  PubMed  Google Scholar 

  • Seidenfaden R, Krauter A, Hildebrandt H (2006) The neural cell adhesion molecule NCAM regulates neuritogenesis by multiple mechanisms of interaction. Neurochem Int 49:1–11

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Arai Y (1993) Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the dentate gyrus of the adult rat. J Neurosci 13:2351–2358

    CAS  PubMed  Google Scholar 

  • Seki T, Arai Y (1999) Temporal and spacial relationships between PSA-NCAM-expressing, newly generated granule cells, and radial glia-like cells in the adult dentate gyrus. J Comp Neurol 410(3):503–513

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Namba T, Mochizuki H (2007) Clustering, migration, and neurite formation of neural precursor cells in the adult rat hippocampus. J Comp Neurol 502(2):275–290

    Article  CAS  PubMed  Google Scholar 

  • Senkov O, Sun M, Weinhold B et al (2006) Polysialylated neural cell adhesion molecule is involved in induction of long-term potentiation and memory acquisition and consolidation in a fear-conditioning paradigm. J Neurosci 26:10888–109898

    Article  CAS  PubMed  Google Scholar 

  • Trouche S, Bontempi B, Roullet P, Rampon C (2009) Recruitment of adult-generated neurons into functional hippocampal networks contributes to updating and strengthening of spatial memory. Proc Natl Acad Sci U S A 106:5919–5924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Borght K, Meerlo P, Luiten PGM et al (2005) Effects of active shock avoidance learning on hippocampal neurogenesis and plasma levels of corticosterone. Behav Brain Res 157:23–30

    Article  PubMed  Google Scholar 

  • Venero C, Herrero AI, Touyarot K et al (2006) Hippocampal up-regulation of NCAM expression and polysialylation plays a key role on spatial memory. Eur J Neurosci 23:1585–1595

    Article  PubMed  Google Scholar 

  • Verret L, Krezymon A, Halley H et al (2013) Transient enriched housing before amyloidosis onset sustains cognitive improvement in Tg2576 mice. Neurobiol Aging 34:211–225

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Hou C, Ma N et al (2007) Enriched environment treatment restores impaired hippocampal synaptic plasticity and cognitive deficits induced by prenatal chronic stress. Neurobiol Learn Mem 87(2):257–263

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the EU FrameWorkProgram 6 LSHM-CT-2005-512012 (Integrated project PROMEMORIA) to C.R., by the CNRS and Toulouse University. We thank L. Roybon at Lund University, Sweden for graciously providing the GFP retroviral vector and M. Alonzo, F. Zaidi at Toulouse University 3 for their technical support. We also thank the ABC facility from ANEXPLO for housing mice.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Rampon.

Additional information

M. Zerwas and S. Trouche contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

429_2015_991_MOESM1_ESM.tiff

Supplementary material 1 Adult hippocampal neurogenesis in PST-ko mice raised in standard housing conditions. Photomicrographs depicting Ki67- (a), DCX- (c) immunoreactive (+) cells (arrowheads) in the DG of PST-ko mice (scale bar = 20 μm). Numbers of proliferating Ki67+ (b), immature DCX+ (d) cells in the DG were the same across all three genotypes. (TIFF 1373 kb)

429_2015_991_MOESM2_ESM.tiff

Supplementary material 2 Normal migration and morphology of new hippocampal neurons in PST-ko mice. Confocal image depicting typical 28-day-old GFP-labeled (+) new neurons (arrowheads) in the DG of a PST-ko mouse (scale bar = 30 μm) (a). Distribution of GFP+ neurons (in  %) within the sub-layers of the DG of PST-wt and PST-ko mice 28 days after viral injection (b). Four-week-old GFP+ neurons of PST-wt and PST-ko mice exhibited similar length of primary dendrite (c) and similar maximal dendritic length (d) (quantified as illustrated by insets above). Data represent mean ± SEM. (SGZ: subgranular zone, GCL: granular cell layer, inner (iGCL), middle (mGCL), outer (oGCL)). (TIFF 908 kb)

429_2015_991_MOESM3_ESM.tiff

Supplementary material 3 No impact of PST deletion on anxiety, locomotion and exploratory behavior. Mice from all genotypes spent the same amount of time in the open arms of the elevated plus maze (EPM) (a). The total distance moved during free exploration in the open-field was the same for all genotypes (b). Data represent mean values ± SEM. (***p < 0.001). (TIFF 121 kb)

429_2015_991_MOESM4_ESM.tiff

Supplementary material 4 Similar anxiety, locomotion and exploratory behavior of mice from all genotypes after environmental enrichment. Enriched (EE) mice of all genotypes spent the same amount of time in the open arms of the elevated plus maze (EPM) (a). Noticeably, after enriched mice spent less time on the open arms from the first min onwards with a pronounced decline from the first to the second min. After enrichment, the total distance moved during free exploration in the open-field was the same for all genotypes (b). Data represent mean values ± SEM. (***p < 0.001). (TIFF 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zerwas, M., Trouche, S., Richetin, K. et al. Environmental enrichment rescues memory in mice deficient for the polysialytransferase ST8SiaIV. Brain Struct Funct 221, 1591–1605 (2016). https://doi.org/10.1007/s00429-015-0991-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-0991-1

Keywords

Navigation