Skip to main content

Advertisement

Log in

Increased recruitment of bone marrow-derived cells into the brain associated with altered brain cytokine profile in senescence-accelerated mice

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Bone marrow-derived cells enter the brain in a non-inflammatory condition through the attachments of choroid plexus and differentiate into ramified myeloid cells. Neurodegenerative conditions may be associated with altered immune-brain interaction. The senescence-accelerated mouse prone 10 (SAMP10) undergoes earlier onset neurodegeneration than C57BL/6 (B6) strain. We hypothesized that the dynamics of immune cells migrating from the bone marrow to the brain is perturbed in SAMP10 mice. We created 4 groups of radiation chimeras by intra-bone marrow-bone marrow transplantation using 2-month-old (2 mo) and 10 mo SAMP10 and B6 mice as recipients with GFP transgenic B6 mice as donors, and analyzed histologically 4 months later. In the [B6 → 10 mo SAMP10] chimeras, more ramified marrow-derived cells populated a larger number of discrete brain regions than the other chimeras, especially in the diencephalon. Multiplex cytokine assays of the diencephalon prepared from non-treated 3 mo and 12 mo SAMP10 and B6 mice revealed that 12 mo SAMP10 mice exhibited higher tissue concentrations of CXCL1, CCL11, G-CSF, CXCL10 and IL-6 than the other groups. Immunohistologically, choroid plexus epithelium and ependyma produced CXCL1, while astrocytic processes in the attachments of choroid plexus expressed CCL11 and G-CSF. The median eminence produced CXCL10, hypothalamic neurons G-CSF and tanycytes CCL11 and G-CSF. These brain cytokine profile changes in 12 mo SAMP10 mice were likely to contribute to acceleration of the dynamics of marrow-derived cells to the diencephalon. Further studies on the functions of ramified marrow-derived myeloid cells would enhance our understanding of the brain-bone marrow interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bauer J, Bauer TM, Kalb T, Taga T, Lengyel G, Hirano T, Kishimoto T, Acs G, Mayer L, Gerok W (1989) Regulation of interleukin 6 receptor expression in human monocytes and monocyte-derived macrophages. Comparison with the expression in human hepatocytes. J Exp Med 170(5):1537–1549

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu S, Robbiani DF, Du X, Rodrigues E, Ignatius R, Wei Y, Ponath P, Young JW, Pope M, Steinman RM, Mojsov S (2002) Expression of a functional eotaxin (CC chemokine ligand 11) receptor CCR3 by human dendritic cells. J Immunol 169(6):2925–2936

    Article  CAS  PubMed  Google Scholar 

  • Bishayi B, Samanta AK (1996) Identification and characterization of specific receptor for interleukin-8 from the surface of human monocytes. Scand J Immunol 43(5):531–536

    Article  CAS  PubMed  Google Scholar 

  • Bondar C, Araya RE, Guzman L, Rua EC, Chopita N, Chirdo FG (2014) Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease. PLoS One 9(2):e89068. doi:10.1371/journal.pone.0089068

    Article  PubMed  PubMed Central  Google Scholar 

  • Carp RI, Meeker HC, Chung R, Kozak CA, Hosokawa M, Fujisawa H (2002) Murine leukemia virus in organs of senescence-prone and -resistant mouse strains. Mech Ageing Dev 123(6):575–584 (S0047637401003773)

    Article  CAS  PubMed  Google Scholar 

  • Christopher MJ, Rao M, Liu F, Woloszynek JR, Link DC (2011) Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med 208(2):251–260. doi:10.1084/jem.20101700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clahsen T, Schaper F (2008) Interleukin-6 acts in the fashion of a classical chemokine on monocytic cells by inducing integrin activation, cell adhesion, actin polymerization, chemotaxis, and transmigration. J Leukoc Biol 84(6):1521–1529. doi:10.1189/jlb.0308178

    Article  CAS  PubMed  Google Scholar 

  • Clase AC, Dimcheff DE, Favara C, Dorward D, McAtee FJ, Parrie LE, Ron D, Portis JL (2006) Oligodendrocytes are a major target of the toxicity of spongiogenic murine retroviruses. Am J Pathol 169(3):1026–1038 (169/3/1026)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa-Ferro ZS, Vitola AS, Pedroso MF, Cunha FB, Xavier LL, Machado DC, Soares MB, Ribeiro-dos-Santos R, DaCosta JC (2010) Prevention of seizures and reorganization of hippocampal functions by transplantation of bone marrow cells in the acute phase of experimental epilepsy. Seizure J Br Epilepsy Assoc 19(2):84–92. doi:10.1016/j.seizure.2009.12.003

    Article  Google Scholar 

  • Diederich K, Sevimli S, Dorr H, Kosters E, Hoppen M, Lewejohann L, Klocke R, Minnerup J, Knecht S, Nikol S, Sachser N, Schneider A, Gorji A, Sommer C, Schabitz WR (2009) The role of granulocyte-colony stimulating factor (G-CSF) in the healthy brain: a characterization of G-CSF-deficient mice. J Neurosci 29(37):11572–11581. doi:10.1523/JNEUROSCI.0453-09.2009

    Article  CAS  PubMed  Google Scholar 

  • Ghorpade A, Xia MQ, Hyman BT, Persidsky Y, Nukuna A, Bock P, Che M, Limoges J, Gendelman HE, Mackay CR (1998) Role of the beta-chemokine receptors CCR3 and CCR5 in human immunodeficiency virus type 1 infection of monocytes and microglia. J Virol 72(4):3351–3361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groom JR, Luster AD (2011) CXCR3 in T cell function. Exp Cell Res 317(5):620–631. doi:10.1016/j.yexcr.2010.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa-Ishii S, Takei S, Chiba Y, Furukawa A, Umegaki H, Iguchi A, Kawamura N, Yoshikawa K, Hosokawa M, Shimada A (2011a) Morphological impairments in microglia precede age-related neuronal degeneration in senescence-accelerated mice. Neuropathology 31(1):20–28. doi:10.1111/j.1440-1789.2010.01126.x

    Article  PubMed  Google Scholar 

  • Hasegawa-Ishii S, Takei S, Inaba M, Umegaki H, Chiba Y, Furukawa A, Kawamura N, Hosokawa M, Shimada A (2011b) Defects in cytokine-mediated neuroprotective glial responses to excitotoxic hippocampal injury in senescence-accelerated mouse. Brain Behav Immun 25(1):83–100. doi:10.1016/j.bbi.2010.08.006

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa-Ishii S, Shimada A, Inaba M, Li M, Shi M, Kawamura N, Takei S, Chiba Y, Hosokawa M, Ikehara S (2013) Selective localization of bone marrow-derived ramified cells in the brain adjacent to the attachments of choroid plexus. Brain Behav Immun 29:82–97. doi:10.1016/j.bbi.2012.12.010

    Article  CAS  PubMed  Google Scholar 

  • Hess DC, Abe T, Hill WD, Studdard AM, Carothers J, Masuya M, Fleming PA, Drake CJ, Ogawa M (2004) Hematopoietic origin of microglial and perivascular cells in brain. Exp Neurol 186(2):134–144. doi:10.1016/j.expneurol.2003.11.005

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa T, Hosono M, Hanada K, Aoike A, Kawai K, Takeda T (1987) Immune responses in newly developed short-lived SAM mice. Selectively impaired T-helper cell activity in in vitro antibody response. Immunology 62(3):425–429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikehara S (2003) A novel strategy for allogeneic stem cell transplantation: perfusion method plus intra-bone marrow injection of stem cells. Exp Hematol 31(12):1142–1146

    Article  PubMed  Google Scholar 

  • Ikehara S (2009) A new bone marrow transplantation method for stem cell disorders. Ann NY Acad Sci 1173:774–780. doi:10.1111/j.1749-6632.2009.04644.x

    Article  PubMed  Google Scholar 

  • Ikehara S (2011) A novel BMT technique for treatment of various currently intractable diseases. Best Pract Res Clin Haematol 24(3):477–483. doi:10.1016/j.beha.2011.04.003

    Article  PubMed  Google Scholar 

  • Janatpour MJ, Hudak S, Sathe M, Sedgwick JD, McEvoy LM (2001) Tumor necrosis factor-dependent segmental control of MIG expression by high endothelial venules in inflamed lymph nodes regulates monocyte recruitment. J Exp Med 194(9):1375–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokovay E, Cunningham LA (2005) Bone marrow-derived microglia contribute to the neuroinflammatory response and express iNOS in the MPTP mouse model of Parkinson’s disease. Neurobiol Dis 19(3):471–478. doi:10.1016/j.nbd.2005.01.023

    Article  CAS  PubMed  Google Scholar 

  • Kumagai N, Chiba Y, Hosono M, Fujii M, Kawamura N, Keino H, Yoshikawa K, Ishii S, Saitoh Y, Satoh M, Shimada A, Hosokawa M (2007) Involvement of pro-inflammatory cytokines and microglia in an age-associated neurodegeneration model, the SAMP10 mouse. Brain Res 1185:75–85

    Article  CAS  PubMed  Google Scholar 

  • Laragione T, Brenner M, Sherry B, Gulko PS (2011) CXCL10 and its receptor CXCR3 regulate synovial fibroblast invasion in rheumatoid arthritis. Arthritis Rheum 63(11):3274–3283. doi:10.1002/art.30573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law P, Lane TA (2002) Mobilization of allogeneic peripheral blood progenitor cells. Cancer Treat Res 110:51–77

    Article  PubMed  Google Scholar 

  • Lee DA, Bedont JL, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S (2012) Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci 15(5):700–702. doi:10.1038/nn.3079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis CA, Solomon JN, Rossi FM, Krieger C (2009) Bone marrow-derived cells in the central nervous system of a mouse model of amyotrophic lateral sclerosis are associated with blood vessels and express CX(3)CR1. Glia 57(13):1410–1419. doi:10.1002/glia.20859

    Article  PubMed  Google Scholar 

  • Li M, Inaba M, Guo K, Abraham NG, Ikehara S (2009) Amelioration of cognitive ability in senescence-accelerated mouse prone 8 (SAMP8) by intra-bone marrow-bone marrow transplantation. Neurosci Lett 465(1):36–40. doi:10.1016/j.neulet.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  • Longo B, Romariz S, Blanco MM, Vasconcelos JF, Bahia L, Soares MB, Mello LE, Ribeiro-dos-Santos R (2010) Distribution and proliferation of bone marrow cells in the brain after pilocarpine-induced status epilepticus in mice. Epilepsia 51(8):1628–1632. doi:10.1111/j.1528-1167.2010.02570.x

    Article  PubMed  Google Scholar 

  • Madore C, Joffre C, Delpech JC, De Smedt-Peyrusse V, Aubert A, Coste L, Laye S, Nadjar A (2013) Early morphofunctional plasticity of microglia in response to acute lipopolysaccharide. Brain Behav Immun 34:151–158. doi:10.1016/j.bbi.2013.08.008

    Article  CAS  PubMed  Google Scholar 

  • Ponath PD, Qin S, Ringler DJ, Clark-Lewis I, Wang J, Kassam N, Smith H, Shi X, Gonzalo JA, Newman W, Gutierrez-Ramos JC, Mackay CR (1996) Cloning of the human eosinophil chemoattractant, eotaxin. Expression, receptor binding, and functional properties suggest a mechanism for the selective recruitment of eosinophils. J Clin Invest 97(3):604–612. doi:10.1172/JCI118456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez M, Alvarez-Erviti L, Blesa FJ, Rodriguez-Oroz MC, Arina A, Melero I, Ramos LI, Obeso JA (2007) Bone-marrow-derived cell differentiation into microglia: a study in a progressive mouse model of Parkinson’s disease. Neurobiol Dis 28(3):316–325. doi:10.1016/j.nbd.2007.07.024

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Kruger C, Steigleder T, Weber D, Pitzer C, Laage R, Aronowski J, Maurer MH, Gassler N, Mier W, Hasselblatt M, Kollmar R, Schwab S, Sommer C, Bach A, Kuhn HG, Schabitz WR (2005) The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115(8):2083–2098. doi:10.1172/JCI23559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarting S, Litwak S, Hao W, Bahr M, Weise J, Neumann H (2008) Hematopoietic stem cells reduce postischemic inflammation and ameliorate ischemic brain injury. Stroke 39(10):2867–2875. doi:10.1161/STROKEAHA.108.513978

    Article  CAS  PubMed  Google Scholar 

  • Shimada A (1999) Age-dependent cerebral atrophy and cognitive dysfunction in SAMP10 mice. Neurobiol Aging 20(2):125–136 (S0197458099000445)

    Article  CAS  PubMed  Google Scholar 

  • Shimada A, Hasegawa-Ishii S (2011) Senescence-accelerated mice (SAMs) as a model for brain aging and immunosenescence. Aging Dis 2(5):414–436 (Special Issue: Immunologic and Inflammatory Processes of Aging and Age-related Disease)

    PubMed  PubMed Central  Google Scholar 

  • Shimada A, Ohta A, Akiguchi I, Takeda T (1992) Inbred SAM-P/10 as a mouse model of spontaneous, inherited brain atrophy. J Neuropathol Exp Neurol 51(4):440–450

    Article  CAS  PubMed  Google Scholar 

  • Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49(4):489–502. doi:10.1016/j.neuron.2006.01.022

    Article  CAS  PubMed  Google Scholar 

  • Solomon JN, Lewis CA, Ajami B, Corbel SY, Rossi FM, Krieger C (2006) Origin and distribution of bone marrow-derived cells in the central nervous system in a mouse model of amyotrophic lateral sclerosis. Glia 53(7):744–753. doi:10.1002/glia.20331

    Article  PubMed  Google Scholar 

  • Sprott RL, Austad SN (2006) Historical development of animal models of aging. In: Conn PM (ed) Handbook of models for human aging. Elsevier Academic Press, pp 1–8

  • Strecker JK, Minnerup J, Schutte-Nutgen K, Gess B, Schabitz WR, Schilling M (2013) Monocyte chemoattractant protein-1-deficiency results in altered blood-brain barrier breakdown after experimental stroke. Stroke 44(9):2536–2544. doi:10.1161/STROKEAHA.111.000528

    Article  CAS  PubMed  Google Scholar 

  • Szmydynger-Chodobska J, Strazielle N, Zink BJ, Ghersi-Egea JF, Chodobski A (2009) The role of the choroid plexus in neutrophil invasion after traumatic brain injury. J Cereb Blood Flow Metab 29(9):1503–1516. doi:10.1038/jcbfm.2009.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda T (2009) Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem Res 34(4):639–659. doi:10.1007/s11064-009-9922-y

    Article  CAS  PubMed  Google Scholar 

  • Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T, Tomita Y, Yasuhira K, Hamamoto H, Shimizu K, Ishii M, Yamamuro T (1981) A new murine model of accelerated senescence. Mech Ageing Dev 17(2):183–194

    Article  CAS  PubMed  Google Scholar 

  • Takeda T, Hosokawa M, Higuchi K (1991) Senescence-accelerated mouse (SAM): a novel murine model of accelerated senescence. J Am Geriatr Soc 39(9):911–919

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Komine-Kobayashi M, Mochizuki H, Yamada M, Furuya T, Migita M, Shimada T, Mizuno Y, Urabe T (2003) Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience 117(3):531–539

    Article  CAS  PubMed  Google Scholar 

  • Wognum AW, van Gils FC, Wagemaker G (1993) Flow cytometric detection of receptors for interleukin-6 on bone marrow and peripheral blood cells of humans and rhesus monkeys. Blood 81(8):2036–2043

    CAS  PubMed  Google Scholar 

  • Wohleb ES, Powell ND, Godbout JP, Sheridan JF (2013) Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J Neurosci 33(34):13820–13833. doi:10.1523/JNEUROSCI.1671-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wohleb ES, Patterson JM, Sharma V, Quan N, Godbout JP, Sheridan JF (2014) Knockdown of interleukin-1 receptor type-1 on endothelial cells attenuated stress-induced neuroinflammation and prevented anxiety-like behavior. J Neurosci 34(7):2583–2591. doi:10.1523/JNEUROSCI.3723-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Ma J, Xu Y, Zhang X, Lao S, Yang B (2014) Pleural fluid mononuclear cells (PFMCs) from tuberculous pleurisy can migrate in vitro in response to CXCL10. Tuberculosis 94(2):123–130. doi:10.1016/j.tube.2013.10.008

    Article  CAS  PubMed  Google Scholar 

  • Yagi H, Irino M, Matsushita T, Katoh S, Umezawa M, Tsuboyama T, Hosokawa M, Akiguchi I, Tokunaga R, Takeda T (1989) Spontaneous spongy degeneration of the brain stem in SAM-P/8 mice, a newly developed memory-deficient strain. J Neuropathol Exp Neurol 48(5):577–590

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Tsirka SE (2014) Monocyte chemoattractant protein-1 and the blood-brain barrier. Cell Mol Life Sci 71(4):683–697. doi:10.1007/s00018-013-1459-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Ms. Takako Nagano for her technical assistance and Mr. Hilary Eastwick-Field and Ms. Keiko Ando for their help in the preparation of the manuscript. This study was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS, Contract Grant Nos.: 22790392 to SHI and 21590458, 24650190 and 25290020 to AS) and by Otsuka Pharmaceutical Company, Ltd.

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuyoshi Shimada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

429_2014_987_MOESM1_ESM.tif

Supplementary Fig. 1 Double immunofluorescence stainings of the [B6 → 10 mo SAMP10] chimeras to identify the differentiation of ramified marrow-derived cells in the brain. Ramified marrow-derived cells expressed Iba-1 (a), a myeloid marker, but not GFAP (b), an astrocyte marker, CNPase (c), an oligodendrocyte marker, or MAP2 (d), a neuronal marker. Ramified marrow-derived cells intertwined with pre-existing parenchymal astrocytes (b) and made contact with oligodendrocytic processes (c) and neuronal dendrites (d) by their fine cytoplasmic processes. Interestingly, ramified marrow-derived cells (a, arrow) kept their distance from pre-existing microglia (a, arrow head). Scale bars, 20 μm (TIFF 9884 kb)

429_2014_987_MOESM2_ESM.tif

Supplementary Fig. 2 Double immunofluorescence staining for CCL11 and SOX-2. CCL11-immunopositive cells (a) with cell bodies located in the ependymal layer of the ventral part of the third ventricle were double-immunopositive for SOX-2 in the nuclei (b), indicative of tanycytes in 12 mo SAMP10 mice. Bars, 50 μm (TIFF 6033 kb)

429_2014_987_MOESM3_ESM.tif

Supplementary Fig. 3 CCL11 and G-CSF expression in the stria terminalis. CCL11 (a) and G-CSF (b) were expressed in fiber bundles of the stria terminalis near the attachments of choroid plexus in 12 mo SAMP10 mice. These bundles consisted of elongated astrocytic cytoplasmic processes. LV, lateral ventricle; ST, stria terminalis. Scale bars, 50 μm (TIFF 3656 kb)

429_2014_987_MOESM4_ESM.tif

Supplementary Fig. 4 G-CSF expression in the hypothalamus. Immunohistochemical staining for G-CSF revealed that G-CSF was expressed in neuronal cell bodies and cytoplasmic processes in the arcuate nucleus. Larger numbers of neurons expressed G-CSF more intensively in 12 mo SAMP10 mice (b) than in 12 mo B6 mice (a). Scale bars, 20 μm (TIFF 3629 kb)

Supplementary material 5 (DOCX 17 kb)

Supplementary material 6 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasegawa-Ishii, S., Inaba, M., Li, M. et al. Increased recruitment of bone marrow-derived cells into the brain associated with altered brain cytokine profile in senescence-accelerated mice. Brain Struct Funct 221, 1513–1531 (2016). https://doi.org/10.1007/s00429-014-0987-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0987-2

Keywords

Navigation