Advertisement

Brain Structure and Function

, Volume 221, Issue 3, pp 1353–1363 | Cite as

The hippocampus and exercise: histological correlates of MR-detected volume changes

  • Sarah V. Biedermann
  • Johannes FussEmail author
  • Jörg Steinle
  • Matthias K. Auer
  • Christof Dormann
  • Claudia Falfán-Melgoza
  • Gabriele Ende
  • Peter Gass
  • Wolfgang Weber-Fahr
Original Article

Abstract

Growing evidence indicates that physical exercise increases hippocampal volume. This has consistently been shown in mice and men using magnetic resonance imaging. On the other hand, histological studies have reported profound alterations on a cellular level including increased adult hippocampal neurogenesis after exercise. A combined investigation of both phenomena has not been documented so far although a causal role of adult neurogenesis for increased hippocampal volume has been suggested before. We investigated 20 voluntary wheel running and 20 sedentary mice after a period of 2 month voluntary wheel running. Half of each group received focalized hippocampal irradiation to inhibit neurogenesis prior to wheel running. Structural MRI and histological investigations concerning newborn neurons (DCX), glial cells (GFAP), microglia, proliferating and pyknotic cells, neuronal activation, as well as blood vessel density and arborisation were performed. In a regression model, neurogenesis was the marker best explaining hippocampal gray matter volume. Individual analyses showed a positive correlation of gray matter volume with DCX-positive newborn neurons in the subgroups, too. GFAP-positive cells significantly interacted with gray matter volume with a positive correlation in sham-irradiated mice and no correlation in irradiated mice. Although neurogenesis appears to be an important marker of higher hippocampal gray matter volume, a monocausal relationship was not indicated, requesting further investigations.

Keywords

Neurogenesis Magnetic resonance imaging Voxel-based morphometry Exercise Hippocampus Histology 

Notes

Acknowledgments

This work was supported in part by grants from the Deutsche Forschungsgemeinschaft to Peter Gass (SFB636-B3) and Gabriele Ende (SFB636-Z3). We gratefully thank Prof. Dr. Klaus-Josef Weber for providing the irradiation equipment.

Conflict of interest

None.

References

  1. Amrein I, Isler K, Lipp HP (2011) Comparing adult hippocampal neurogenesis in mammalian species and orders: influence of chronological age and life history stage. Eur J Neurosci 34(6):978–987CrossRefPubMedGoogle Scholar
  2. Asami T, Bouix S, Whitford TJ, Shenton ME, Salisbury DF, McCarley RW (2012) Longitudinal loss of gray matter volume in patients with first-episode schizophrenia: DARTEL automated analysis and ROI validation. Neuroimage 59(2):986–996CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ben Abdallah NM, Slomianka L, Vyssotski AL, Lipp HP (2010) Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol Aging 31(1):151–161CrossRefPubMedGoogle Scholar
  4. Biedermann S, Fuss J, Zheng L, Sartorius A, Falfan-Melgoza C, Demirakca T, Gass P, Ende G, Weber-Fahr W (2012) In vivo voxel based morphometry: detection of increased hippocampal volume and decreased glutamate levels in exercising mice. Neuroimage 61(4):1206–1212CrossRefPubMedGoogle Scholar
  5. Bottiger BW, Teschendorf P, Krumnikl JJ, Vogel P, Galmbacher R, Schmitz B, Motsch J, Martin E, Gass P (1999) Global cerebral ischemia due to cardiocirculatory arrest in mice causes neuronal degeneration and early induction of transcription factor genes in the hippocampus. Brain Res Mol Brain Res 65(2):135–142CrossRefPubMedGoogle Scholar
  6. Chiang CS, McBride WH, Withers HR (1993) Radiation-induced astrocytic and microglial responses in mouse brain. Radiother Oncol 29(1):60–68CrossRefPubMedGoogle Scholar
  7. Clark PJ, Brzezinska WJ, Puchalski EK, Krone DA, Rhodes JS (2009) Functional analysis of neurovascular adaptations to exercise in the dentate gyrus of young adult mice associated with cognitive gain. Hippocampus 19(10):937–950CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cleppien D, Lei Zheng L, Falfan-Melgoza C, Vollmayr B, Ende G, Weber-Fahr W, Sartorius A (2013) Do Regional Cerebral Blood Volume (rCBV) Effects Partially Explain Short-Termed Changes of Voxel-Based Morphometry (VBM)? Proc Intl Soc Mag Reson Med 21Google Scholar
  9. Demirakca T, Brusniak W, Tunc-Skarka N, Wolf I, Meier S, Matthaus F, Ende G, Schulze TG, Diener C (2014) Does body shaping influence brain shape? Habitual physical activity is linked to brain morphology independent of age. World J Biol Psychiatry 15(5):387–396CrossRefPubMedGoogle Scholar
  10. Dorr AE, Lerch JP, Spring S, Kabani N, Henkelman RM (2008) High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. Neuroimage 42:60–69CrossRefPubMedGoogle Scholar
  11. Erickson KI, Prakash RS, Voss MW, Chaddock L, Hu L, Morris KS, White SM, Wojcicki TR, McAuley E, Kramer AF (2009) Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19(10):1030–1039CrossRefPubMedPubMedCentralGoogle Scholar
  12. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, McAuley E, Kramer AF (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA 108(7):3017–3022CrossRefPubMedPubMedCentralGoogle Scholar
  13. Franklin TR, Wang Z, Shin J, Jagannathan K, Suh JJ, Detre JA, O’Brien CP, Childress AR (2013) A VBM study demonstrating ‘apparent’ effects of a single dose of medication on T1-weighted MRIs. Brain Struct Funct 218(1):97–104CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fuss J, Ben Abdallah NM, Hensley FW, Weber KJ, Hellweg R, Gass P (2010) Deletion of running-induced hippocampal neurogenesis by irradiation prevents development of an anxious phenotype in mice. PLoS One 5(9):0012769CrossRefGoogle Scholar
  15. Fuss J, Vogt MA, Weber KJ, Burke TF, Gass P, Hensler JG (2013) Hippocampal serotonin-1A receptor function in a mouse model of anxiety induced by long term voluntary wheel running. Synapse 67(10):648–655CrossRefPubMedGoogle Scholar
  16. Fuss J, Biedermann SV, Falfan-Melgoza C, Auer MK, Zheng L, Steinle J, Horner F, Sartorius A, Ende G, Weber-Fahr W, Gass P (2014) Exercise boosts hippocampal volume by preventing early age-related gray matter loss. Hippocampus 24(2):131–134CrossRefPubMedGoogle Scholar
  17. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2(10):861–863CrossRefPubMedGoogle Scholar
  18. Ho NF, Hooker JM, Sahay A, Holt DJ, Roffman JL (2013) In vivo imaging of adult human hippocampal neurogenesis: progress, pitfalls and promise. Mol Psychiatry 18(4):404–416CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hong JH, Chiang CS, Campbell IL, Sun JR, Withers HR, McBride WH (1995) Induction of acute phase gene expression by brain irradiation. Int J Radiat Oncol Biol Phys 33(3):619–626CrossRefPubMedGoogle Scholar
  20. Killgore WD, Olson EA, Weber M (2013) Physical exercise habits correlate with gray matter volume of the hippocampus in healthy adult humans. Sci Rep 3:3457CrossRefPubMedPubMedCentralGoogle Scholar
  21. Klauschen F, Goldman A, Barra V, Meyer-Lindenberg A, Lundervold A (2009) Evaluation of automated brain MR image segmentation and volumetry methods. Hum Brain Mapp 30(4):1310–1327CrossRefPubMedGoogle Scholar
  22. Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, Horvat V, Volk B, Kempermann G (2010) Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One 5(1):e8809CrossRefPubMedPubMedCentralGoogle Scholar
  23. Luders E, Steinmetz H, Jancke L (2002) Brain size and grey matter volume in the healthy human brain. Neuro Report 13(17):2371–2374Google Scholar
  24. Manganas LN, Zhang X, Li Y, Hazel RD, Smith SD, Wagshul ME, Henn F, Benveniste H, Djuric PM, Enikolopov G, Maletic-Savatic M (2007) Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science 318(5852):980–985CrossRefPubMedPubMedCentralGoogle Scholar
  25. Pajonk FG, Wobrock T, Gruber O, Scherk H, Berner D, Kaizl I, Kierer A, Muller S, Oest M, Meyer T, Backens M, Schneider-Axmann T, Thornton AE, Honer WG, Falkai P (2010) Hippocampal plasticity in response to exercise in schizophrenia. Arch Gen Psychiatry 67(2):133–143CrossRefPubMedGoogle Scholar
  26. Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, Sloan R, Gage FH, Brown TR, Small SA (2007) An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 104(13):5638–5643CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ramm P, Couillard-Despres S, Plotz S, Rivera FJ, Krampert M, Lehner B, Kremer W, Bogdahn U, Kalbitzer HR, Aigner L (2009) A nuclear magnetic resonance biomarker for neural progenitor cells: is it all neurogenesis? Stem Cells 27(2):420–423CrossRefPubMedGoogle Scholar
  28. Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, Lesch KP (2006) Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 11(5):514–522CrossRefPubMedGoogle Scholar
  29. Schlaffke L, Lissek S, Lenz M, Brune M, Juckel G, Hinrichs T, Platen P, Tegenthoff M, Schmidt-Wilcke T (2014) Sports and brain morphology - a voxel-based morphometry study with endurance athletes and martial artists. Neuroscience 259:35–42CrossRefPubMedGoogle Scholar
  30. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219CrossRefPubMedGoogle Scholar
  31. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Bostrom E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisen J (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell, 2013/06/12 edn, pp 1219–1227Google Scholar
  32. Strekalova T, Zorner B, Zacher C, Sadovska G, Herdegen T, Gass P (2003) Memory retrieval after contextual fear conditioning induces c-Fos and JunB expression in CA1 hippocampus. Genes Brain Behav 2(1):3–10CrossRefPubMedGoogle Scholar
  33. Toni N, Laplagne DA, Zhao C, Lombardi G, Ribak CE, Gage FH, Schinder AF (2008) Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 11(8):901–907CrossRefPubMedPubMedCentralGoogle Scholar
  34. van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2(3):266–270CrossRefPubMedGoogle Scholar
  35. van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25(38):8680–8685CrossRefPubMedPubMedCentralGoogle Scholar
  36. von Bohlen, Halbach O (2011) Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus. Cell Tissue Res 345(1):1–19CrossRefGoogle Scholar
  37. Voss MW, Vivar C, Kramer AF, van Praag H (2013) Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci 17(10):525–544CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zhang L, Cooper-Kuhn CM, Nannmark U, Blomgren K, Kuhn HG (2010) Stimulatory effects of thyroid hormone on brain angiogenesis in vivo and in vitro. J Cereb Blood Flow Metab 30(2):323–335CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sarah V. Biedermann
    • 1
    • 2
  • Johannes Fuss
    • 3
    Email author
  • Jörg Steinle
    • 3
  • Matthias K. Auer
    • 3
    • 4
  • Christof Dormann
    • 3
  • Claudia Falfán-Melgoza
    • 2
  • Gabriele Ende
    • 2
  • Peter Gass
    • 3
  • Wolfgang Weber-Fahr
    • 1
    • 2
  1. 1.Departments of Neuroimaging and Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health Mannheim (ZI), RG Translational ImagingUniversity of HeidelbergMannheimGermany
  2. 2.Department of Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health Mannheim (ZI)University of HeidelbergMannheimGermany
  3. 3.Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health Mannheim (ZI), RG Animal Models in PsychiatryUniversity of HeidelbergMannheimGermany
  4. 4.Department of EndocrinologyMax Planck Institute of PsychiatryMunichGermany

Personalised recommendations