Advertisement

Brain Structure and Function

, Volume 221, Issue 1, pp 487–506 | Cite as

Thalamic alterations in preterm neonates and their relation to ventral striatum disturbances revealed by a combined shape and pose analysis

  • Yi Lao
  • Yalin Wang
  • Jie Shi
  • Rafael Ceschin
  • Marvin D. Nelson
  • Ashok Panigrahy
  • Natasha LeporéEmail author
Original Article

Abstract

Finding the neuroanatomical correlates of prematurity is vital to understanding which structures are affected, and to designing efficient prevention and treatment strategies. Converging results reveal that thalamic abnormalities are important indicators of prematurity. However, little is known about the localization of the abnormalities within the subnuclei of the thalamus, or on the association of altered thalamic development with other deep gray matter disturbances. Here, we aim to investigate the effect of prematurity on the thalamus and the putamen in the neonatal brain, and further investigate the associated abnormalities between these two structures. Using brain structural magnetic resonance imaging, we perform a novel combined shape and pose analysis of the thalamus and putamen between 17 preterm (41.12 ± 5.08 weeks) and 19 term-born (45.51 ± 5.40 weeks) neonates at term equivalent age. We also perform a set of correlation analyses between the thalamus and the putamen, based on the surface and pose results. We locate significant alterations on specific surface regions such as the anterior and ventral anterior (VA) thalamic nuclei, and significant relative pose changes of the left thalamus and the right putamen. In addition, we detect significant association between the thalamus and the putamen for both surface and pose parameters. The regions that are significantly associated include the VA, and the anterior and inferior putamen. We detect statistically significant surface deformations and pose changes on the thalamus and putamen, and for the first time, demonstrate the feasibility of using relative pose parameters as indicators for prematurity in neonates. Our methods show that regional abnormalities of the thalamus are associated with alterations of the putamen, possibly due to disturbed development of shared pre-frontal connectivity. More specifically, the significantly correlated regions in these two structures point to frontal-subcortical pathways including the dorsolateral prefrontal-subcortical circuit, the lateral orbitofrontal-subcortical circuit, the motor circuit, and the oculomotor circuit. These findings reveal new insight into potential subcortical structural covariates for poor neurodevelopmental outcomes in the preterm population.

Keywords

Frontal-subcortical circuits Pose Prematurity Subcortical structures Tensor-based morphometry 

Abbreviations

ADHD

Attentional deficit/hyperactivity disorder

ASD

Autism spectrum disorders

DLPC

Dorsolateral prefrontal circuit

LOFC

The lateral orbitofrontal circuit

PVL

Periventricular leukomalacia

MRI

Magnetic resonance imaging

mTBM

Multivariate surface tensor-based morphometry

PDM

Point distribution model

MAD

Medial axis distance

LTha

Left thalamus

RTha

Right thalamus

LPuta

Left putamen

RPuta

Right putamen

VA

Ventral anterior

CM

Centrum medianum

Pf

Parafascicularis

Gpi

The globus pallidus interna

Gpe

The globus pallidus externa

STN

The subthalamic nucleus

MD

Medial-dorsal

ASD

Autism spectrum disorders

VPB

Very preterm birth

Notes

Acknowledgments

We thank for the participation of families from Children’s Hospital Los Angeles and Children’s Hospital of Pittsburgh UPMC. This work was supported by the National Institutes of Health through NIH grant 5K23-NS063371 and grants R21EB012177 and R21AG043760. For more question, please address correspondence to: Dr. Natasha Leporé PhD, Department of Radiology, University of Southern California and Children’s Hospital Los Angeles, 4650 Sunset Blvd, MS#81, Los Angeles, CA 90027, USA, Phone:(323) 361–6276, E-mail: nlepore@chla.usc.edu.

References

  1. Aggleton JP, Brown MW (1999) Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 22:425–444PubMedGoogle Scholar
  2. Aggleton JP, O’Mara SM, Vann SD, Wright NF, Tsanov M, Erichsen JT (2010) Hippocampal–anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. Eur J Neurosci 31:2292–2307PubMedCentralCrossRefPubMedGoogle Scholar
  3. Alexander GE, Crutcher MD, DeLong MR (1991) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146CrossRefGoogle Scholar
  4. Allin M, Henderson M, Suckling J, Nosarti C, Rushe T, Fearon P, Stewart AL, Bullmore E, Rifkin L, Murray R (2004) Effects of very low birthweight on brain structure in adulthood. Dev Med Child Neurol 46:46–53CrossRefPubMedGoogle Scholar
  5. Arsigny V, Commowick O, Pennec X, Ayache N (2006) A log-euclidean framework for statistics on diffeomorphisms. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006. Springer, Berlin, pp 924–931Google Scholar
  6. Ball G, Boardman JP, Rueckert D, Aljabar P, Arichi T, Merchant N, Gousias IS, Edwards AD, Counsell SJ (2012) The effect of preterm birth on thalamic and cortical development. Cereb Cortex 22:1016–1024PubMedCentralCrossRefPubMedGoogle Scholar
  7. Bechara A, Tranel D, Damasio H (2000) Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain 123:2189–2202CrossRefPubMedGoogle Scholar
  8. Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM, Boulby PA et al (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6(7):750–757CrossRefPubMedGoogle Scholar
  9. Bhutta AT, Cleves MA, Casey PH, Cradock MM, Anand K (2002) Cognitive and behavioral outcomes of school-aged children who were born preterm. JAMA 288:728–737CrossRefPubMedGoogle Scholar
  10. Boardman JP, Counsell SJ, Rueckert D, Kapellou O, Bhatia KK, Aljabar P, Hajnal J, Allsop JM, Rutherford MA, Edwards AD (2006) Abnormal deep grey matter development following preterm birth detected using deformation-based morphometry. Neuroimage 32:70–78CrossRefPubMedGoogle Scholar
  11. Boardman JP, Craven C, Valappil S, Counsell SJ, Dyet L, Rueckert D, Aljabar P, Rutherford MA, Chew A, Allsop JM et al (2010) A common neonatal image phenotype predicts adverse neurodevelopmental outcome in children born preterm. Neuroimage 52:409–414CrossRefPubMedGoogle Scholar
  12. Bossa MN, Olmos S (2006) Statistical model of similarity transformations: building a multi-object pose model of brain structures. In: IEEE Comput. Soc. Workshop Math. Methods Biomed. Image Anal, p 59Google Scholar
  13. Bossa M, Zacur E, Olmos S (2011) Statistical analysis of relative pose information of subcortical nuclei: application on ADNI data. Neuroimage 55:999–1008PubMedCentralCrossRefPubMedGoogle Scholar
  14. Buchmayer S, Johansson S, Johansson A, Hultman CM, Sparén P, Cnattingius S (2009) Can association between preterm birth and autism be explained by maternal or neonatal morbidity? Pediatrics 124:e817–e825CrossRefPubMedGoogle Scholar
  15. Caravale B, Tozzi C, Albino G, Vicari S (2005) Cognitive development in low risk preterm infants at 3–4 years of life. Arch Dis Child Fetal Neonatal Ed 90:F474–F479PubMedCentralCrossRefPubMedGoogle Scholar
  16. Casanova MF, El-Baz AS, Kamat SS, Dombroski BA, Khalifa F, Elnakib A, Soliman A, Allison-McNutt A, Switala AE (2013) Focal cortical dysplasias in autism spectrum disorders. Acta Neuropathol Commun 1:67PubMedCentralCrossRefPubMedGoogle Scholar
  17. Cheon KA, Kim YS, Oh SH, Park SY, Yoon HW, Herrington J, Nair A, Koh YJ, Jang DP, Kim YB et al (2011) Involvement of the anterior thalamic radiation in boys with high functioning autism spectrum disorders: a diffusion tensor imaging study. Brain Res 1417:77–86CrossRefPubMedGoogle Scholar
  18. Counsell SJ, Allsop JM, Harrison MC, Larkman DJ, Kennea NL, Kapellou O, Cowan FM, Hajnal JV, Edwards AD, Rutherford MA (2003) Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 112:1–7CrossRefPubMedGoogle Scholar
  19. Counsell SJ, Shen Y, Boardman JP, Larkman DJ, Kapellou O, Ward P, Allsop JM, Cowan FM, Hajnal JV, Edwards AD et al (2006) Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics 117:376–386CrossRefPubMedGoogle Scholar
  20. Cummings JL (1993) Frontal-subcortical circuits and human behavior. Arch Neurol 50:873CrossRefPubMedGoogle Scholar
  21. De Jong L, Van Der Hiele K, Veer I, Houwing J, Westendorp R, Bollen E, De Bruin P, Middelkoop H, Van Buchem M, Van Der Grond J (2008) Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study. Brain 131:3277–3285PubMedCentralCrossRefPubMedGoogle Scholar
  22. Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA et al (2010) Prediction of individual brain maturity using fMRI. Science 329(5997):1358–1361PubMedCentralCrossRefPubMedGoogle Scholar
  23. Draganski B, Kherif F, Klöppel S, Cook PA, Alexander DC, Parker GJ, Deichmann R, Ashburner J, Frackowiak RS (2008) Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci 28:7143–7152CrossRefPubMedGoogle Scholar
  24. Dryden I, Mardia K (1998) Statistical analysis of shape. Wiley, LondonGoogle Scholar
  25. Erbetta A, Mandelli ML, Savoiardo M, Grisoli M, Bizzi A, Soliveri P, Chiapparini L, Prioni S, Bruzzone MG, Girotti F (2009) Diffusion tensor imaging shows different topographic involvement of the thalamus in progressive supranuclear palsy and corticobasal degeneration. AJNR Am J Neuroradiol 30:1482–1487CrossRefPubMedGoogle Scholar
  26. Fily A, Pierrat V, Delporte V, Breart G, Truffert P et al (2006) Factors associated with neurodevelopmental outcome at 2 years after very preterm birth: the population-based Nord-Pas-de-Calais EPIPAGE cohort. Pediatrics 117:357–366CrossRefPubMedGoogle Scholar
  27. Flamand VH, Nadeau L, Schneider C (2012) Brain motor excitability and visuomotor coordination in 8-year-old children born very preterm. Clin Neurophysiol 123:1191–1199CrossRefPubMedGoogle Scholar
  28. Gazzaniga MS (2000) Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain 123(7):1293–1326CrossRefPubMedGoogle Scholar
  29. Golden JA, Harding BN (2010) Cortical malformations: unfolding polymicrogyria. Nat Rev Neurol 6:471–472CrossRefPubMedGoogle Scholar
  30. Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. Compr Physiol 373–417. doi: 10.1002/cphy.cp010509
  31. Goodall C (1991) Procrustes methods in the statistical analysis of shape. J R Stat Soc. Ser B (Methodol) 53(2):285–339Google Scholar
  32. Gorczowski K, Styner M, Jeong JY, Marron J, Piven J, Hazlett HC, Pizer SM, Gerig G (2010) Multi-object analysis of volume, pose, and shape using statistical discrimination. Pattern Analysis and Machine Intelligence, IEEE Transactions on 32, 652–661Google Scholar
  33. Groenewegen HJ, Berendse HW (1994) The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei. Trends Neurosci 17:52–57CrossRefPubMedGoogle Scholar
  34. Grunau RE, Whitfield MF, Davis C (2002) Pattern of learning disabilities in children with extremely low birth weight and broadly average intelligence. Arch Pediatr Adolesc Med 156:615CrossRefPubMedGoogle Scholar
  35. Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330CrossRefPubMedGoogle Scholar
  36. Hart AR, Whitby EW, Griffiths PD, Smith MF (2008) Magnetic resonance imaging and developmental outcome following preterm birth: review of current evidence. Dev Med Child Neurol 50:655–663CrossRefPubMedGoogle Scholar
  37. Hotelling H (1931) The generalization of student’s ratio. Ann Math Stat 2:360–378CrossRefGoogle Scholar
  38. Hutsler J, Galuske RA (2003) Hemispheric asymmetries in cerebral cortical networks. Trends Neurosci 26:429–435CrossRefPubMedGoogle Scholar
  39. Inder TE, Warfield SK, Wang H, Hüppi PS, Volpe JJ (2005) Abnormal cerebral structure is present at term in premature infants. Pediatrics 115:286–294CrossRefPubMedGoogle Scholar
  40. Isaacs EB, Lucas A, Chong WK, Wood SJ, Johnson CL, Marshall C, Vargha-Khadem F, Gadian DG (2000) Hippocampal volume and everyday memory in children of very low birth weight. Pediatr Res 47:713–720CrossRefPubMedGoogle Scholar
  41. Joseph RM, Tager-Flusberg H (2004) The relationship of theory of mind and executive functions to symptom type and severity in children with autism. Dev Psychopathol 16:137–155PubMedCentralCrossRefPubMedGoogle Scholar
  42. Karcher H (1977) Riemannian center of mass and mollifier smoothing. Commun Pure Appl Math 30:509–541CrossRefGoogle Scholar
  43. Kesler SR, Ment LR, Vohr B, Pajot SK, Schneider KC, Katz KH, Ebbitt TB, Duncan CC, Makuch RW, Reiss AL (2004) Volumetric analysis of regional cerebral development in preterm children. Pediatr Neurol 31:318–325PubMedCentralCrossRefPubMedGoogle Scholar
  44. Kesler SR, Reiss AL, Vohr B, Watson C, Schneider KC, Katz KH, Maller-Kesselman J, Silbereis J, Constable RT, Makuch RW et al (2008) Brain volume reductions within multiple cognitive systems in male preterm children at age twelve. J Pediatrics 152:513–520CrossRefGoogle Scholar
  45. Kinney HC (2006) The near-term (late preterm) human brain and risk for periventricular leukomalacia: a review. Semin Perinatol 30(2):81–88CrossRefPubMedGoogle Scholar
  46. Klein JC, Rushworth MF, Behrens TE, Mackay CE, de Crespigny AJ, D’Arceuil H, Johansen-Berg H (2010) Topography of connections between human prefrontal cortex and mediodorsal thalamus studied with diffusion tractography. Neuroimage 51:555–564PubMedCentralCrossRefPubMedGoogle Scholar
  47. Kostovic I, Goldman-Rakic PS (1983) Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain. J Comp Neurol 219:431–447CrossRefPubMedGoogle Scholar
  48. Kostović I, Lukinović N, Judaš M, Bogdanović N, Mrzljak L, Zečević N, Kubat M (1989) Structural basis of the developmental plasticity in the human cerebral cortex: the role of the transient subplate zone. Metab Brain Dis 4:17–23CrossRefPubMedGoogle Scholar
  49. Kostović I, Judaš M, Sedmak G (2011) Developmental history of the subplate zone, subplate neurons and interstitial white matter neurons: relevance for schizophrenia. Int J Dev Neurosci 29:193–205CrossRefPubMedGoogle Scholar
  50. Lao Y, Shi J, Wang Y, Ceschin R, Hwang D, Nelson M, Panigrahy A, Lepore N (2013) Statistical analysis of relative pose of the thalamus in preterm neonates. In: Clinical Image-based Procedures. Translational research in medical imaging. LNCS 8361, 1–9. doi: 10.1007/978-3-319-05666-1_1.
  51. Lepore N, Brun C, Chou YY, Chiang MC, Dutton RA, Hayashi KM, Luders E, Lopez OL, Aizenstein HJ, Toga AW et al (2008) Generalized tensor-based morphometry of HIV/AIDS using multivariate statistics on deformation tensors. IEEE Trans Med Imaging 27:129–141PubMedCentralCrossRefPubMedGoogle Scholar
  52. Limperopoulos C, Bassan H, Sullivan NR, Soul JS, Robertson RL, Moore M, Ringer SA, Volpe JJ, du Plessis AJ (2008) Positive screening for autism in ex-preterm infants: prevalence and risk factors. Pediatrics 121:758–765PubMedCentralCrossRefPubMedGoogle Scholar
  53. Lin Y, Okumura A, Hayakawa F, Kato T, Kuno K, Watanabe K (2001) Quantitative evaluation of thalami and basal ganglia in infants with periventricular leukomalacia. Dev Med Child Neurol 43:481–485CrossRefPubMedGoogle Scholar
  54. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput Graph 21(4):163–169CrossRefGoogle Scholar
  55. Marlow N, Wolke D, Bracewell MA, Samara M (2005) Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med 352:9–19CrossRefPubMedGoogle Scholar
  56. Mega MS, Cummings JL (1994) Frontal-subcortical circuits and neuropsychiatric disorders. Neurosciences 6:358–370Google Scholar
  57. Metzger CD, van der Werf YD, Walter M (2013) Functional mapping of thalamic nuclei and their integration into cortico-striatal-thalamo-cortical loops via ultra-high resolution imaging—from animal anatomy to in vivo imaging in humans. Front Neurosci 7Google Scholar
  58. Morel A, Loup F, Magnin M, Jeanmonod D (2002) Neurochemical organization of the human basal ganglia: anatomofunctional territories defined by the distributions of calcium-binding proteins and SMI-32. J Comp Neurol 443(1):86–103CrossRefPubMedGoogle Scholar
  59. Mrzljak L, Uylings H, Kostovic I, van Eden CG (1988) Prenatal development of neurons in the human prefrontal cortex: I. a qualitative golgi study. J Comp Neurol 271:355–386CrossRefPubMedGoogle Scholar
  60. Nagasunder A, Kinney H, Blüml S, Tavaré C, Rosser T, Gilles F, Nelson M, Panigrahy A (2011) Abnormal microstructure of the atrophic thalamus in preterm survivors with periventricular leukomalacia. Am J Neuroradiol 32:185–191PubMedCentralPubMedGoogle Scholar
  61. Nichols TE, Holmes AP (2001) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25CrossRefGoogle Scholar
  62. Niemann K, Mennicken VR, Jeanmonod D, Morel A (2000) The Morel stereotactic atlas of the human thalamus: atlas-to-MR registration of internally consistent canonical model. Neuroimage 12:601–616CrossRefPubMedGoogle Scholar
  63. Pennec X, Fillard P, Ayache N (2006) A riemannian framework for tensor computing. Int J Comput Vis 66:41–66CrossRefGoogle Scholar
  64. Peterson BS, Vohr B, Staib LH, Cannistraci CJ, Dolberg A, Schneider KC, Katz KH, Westerveld M, Sparrow S, Anderson AW et al (2000) Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 284:1939–1947CrossRefPubMedGoogle Scholar
  65. Pizer SM, Fritsch DS, Yushkevich PA, Johnson VE, Chaney EL (1999) Segmentation, registration, and measurement of shape variation via image object shape. IEEE Trans Med Imaging 18:851–865CrossRefPubMedGoogle Scholar
  66. Prensa L, Richard S, Parent A (2003) Chemical anatomy of the human ventral striatum and adjacent basal forebrain structures. J Comp Neurol 460(3):345–367CrossRefPubMedGoogle Scholar
  67. Reijneveld SA, De Kleine M, van Baar AL, Kollée LA, Verhaak CM, Verhulst FC, Verloove-Vanhorick SP (2006) Behavioural and emotional problems in very preterm and very low birthweight infants at age 5 years. Arch Dis Child Fetal Neonatal Ed 91:F423–F428PubMedCentralCrossRefPubMedGoogle Scholar
  68. Robinson RG, Kubos KL, Starr LB, Rao K, Price TR (1984) Mood disorders in stroke patients: importance of location of lesion. Brain 107:81–93CrossRefPubMedGoogle Scholar
  69. Robinson S, Goddard L, Dritschel B, Wisley M, Howlin P (2009) Executive functions in children with autism spectrum disorders. Brain Cogn 71:362–368CrossRefPubMedGoogle Scholar
  70. Shi J, Wang Y, Ceschin R, An X, Nelson MD, Panigrahy A, Leporé N (2012) Surface fluid registration and multivariate tensor-based morphometry in newborns-the effects of prematurity on the putamen. In: Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). Hollywood, CA, USA. http://gsl.lab.asu.edu/archive/apsipa_12.pdf
  71. Shi J, Wang Y, Ceschin R, An X, Lao Y, Vanderbilt D, Nelson MD, Thompson PM, Panigrahy A, Leporé N (2013) A multivariate surface-based analysis of the putamen in premature newborns: regional differences within the ventral striatum. PLoS One 8:e66736PubMedCentralCrossRefPubMedGoogle Scholar
  72. Sonuga-Barke EJ (2002) Psychological heterogeneity in AD/HD—a dual pathway model of behaviour and cognition. Behav Brain Res 130:29–36CrossRefPubMedGoogle Scholar
  73. Srinivasan L, Dutta R, Counsell SJ, Allsop JM, Boardman JP, Rutherford MA, Edwards AD (2007) Quantification of deep gray matter in preterm infants at term-equivalent age using manual volumetry of 3-tesla magnetic resonance images. Pediatrics 119:759–765CrossRefPubMedGoogle Scholar
  74. Starkstein SE, Robinson RG, Price TR (1987) Comparison of cortical and subcortical lesions in the production of poststroke mood disorders. Brain 110:1045–1059CrossRefPubMedGoogle Scholar
  75. Starkstein SE, Robinson RG, Berthier ML, Parikh RM, Price TR (1988) Differential mood changes following basal ganglia vs thalamic lesions. Arch Neurol 45:725CrossRefPubMedGoogle Scholar
  76. Strand-Brodd K, Ewald U, Grönqvist H, Holmström G, Strömberg B, Grönqvist E, von Hofsten C, Rosander K (2011) Development of smooth pursuit eye movements in very preterm infants: 1. general aspects. Acta Paediatr 100:983–991PubMedCentralCrossRefPubMedGoogle Scholar
  77. Styner M, Oguz I, Xu S, Brechbühler C, Pantazis D, Gerig G (2006) Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J 1071:242PubMedGoogle Scholar
  78. Thompson PM, Hayashi KM, de Zubicaray GI, Janke AL, Rose SE, Semple J, Hong MS, Herman DH, Gravano D, Doddrell DM et al (2004) Mapping hippocampal and ventricular change in alzheimer disease. Neuroimage 22:1754–1766CrossRefPubMedGoogle Scholar
  79. Toplak ME, Jain U, Tannock R (2005) Executive and motivational processes in adolescents with attention-deficit-hyperactivity disorder (ADHD). Behav Brain Funct 1:8PubMedCentralCrossRefPubMedGoogle Scholar
  80. Van Der Werf YD, Jolles J, Witter MP, Uylings H (2003) Contributions of thalamic nuclei to declarative memory functioning. Cortex 39:1047–1062CrossRefPubMedGoogle Scholar
  81. Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124PubMedCentralCrossRefPubMedGoogle Scholar
  82. Wang Y, Zhang J, Gutman B, Chan TF, Becker JT, Aizenstein HJ, Lopez OL, Tamburo RJ, Toga AW, Thompson PM (2010) Multivariate tensor-based morphometry on surfaces: application to mapping ventricular abnormalities in HIV/AIDS. Neuroimage 49:2141–2157PubMedCentralCrossRefPubMedGoogle Scholar
  83. Wang Y, Panigrahy A, Ceschin R, Liu S, Thompson PM, Lepore N (2011a) Surface morphometry of subcortical structures in premature neonates. In: Proc Intl Soc Mag Reson Med, p 2585Google Scholar
  84. Wang Y, Song Y, Rajagopalan P, An T, Liu K, Chou YY, Gutman B, Toga AW, Thompson PM (2011b) Surface-based TBM boosts power to detect disease effects on the brain: an N = 804 ADNI study. Neuroimage 56:1993–2010PubMedCentralCrossRefPubMedGoogle Scholar
  85. Wang Y, Panigrahy A, Shi J, Ceschin R, Nelson M (2011b). Multivariate tensor based morphometry on premature neonates: a pilot study. In: Image Analysis of Human Brain Development (IAHBD). Toronto, Canada. http://gsl.lab.asu.edu/archive/IAHBD-PreMature.pdf
  86. Wiegell MR, Tuch DS, Larsson HB, Wedeen VJ (2003) Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging. Neuroimage 19:391–401CrossRefPubMedGoogle Scholar
  87. Wood NS, Marlow N, Costeloe K, Gibson AT, Wilkinson AR (2000) Neurologic and developmental disability after extremely preterm birth. N Engl J Med 343:378–384CrossRefPubMedGoogle Scholar
  88. Zhang H, Yushkevich PA, Alexander DC, Gee JC et al (2006) Deformable registration of diffusion tensor mr images with explicit orientation optimization. Med image Anal 10:764–785CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yi Lao
    • 1
  • Yalin Wang
    • 2
  • Jie Shi
    • 2
  • Rafael Ceschin
    • 3
  • Marvin D. Nelson
    • 1
  • Ashok Panigrahy
    • 1
    • 3
  • Natasha Leporé
    • 1
    Email author
  1. 1.Department of RadiologyUniversity of Southern California and Children’s HospitalLos AngelesUSA
  2. 2.School of Computing, Informatics, and Decision Systems EngineeringArizona State UniversityTempeUSA
  3. 3.Department of RadiologyChildren’s Hospital of Pittsburgh UPMCPittsburghUSA

Personalised recommendations