Advertisement

Brain Structure and Function

, Volume 221, Issue 1, pp 447–461 | Cite as

Cortical thickness and surface area in neonates at high risk for schizophrenia

  • Gang Li
  • Li Wang
  • Feng Shi
  • Amanda E. Lyall
  • Mihye Ahn
  • Ziwen Peng
  • Hongtu Zhu
  • Weili Lin
  • John H. Gilmore
  • Dinggang ShenEmail author
Original Article

Abstract

Schizophrenia is a neurodevelopmental disorder associated with subtle abnormal cortical thickness and cortical surface area. However, it is unclear whether these abnormalities exist in neonates associated with genetic risk for schizophrenia. To this end, this preliminary study was conducted to identify possible abnormalities of cortical thickness and surface area in the high-genetic-risk neonates. Structural magnetic resonance images were acquired from offspring of mothers (N = 21) who had schizophrenia (N = 12) or schizoaffective disorder (N = 9), and also matched healthy neonates of mothers who were free of psychiatric illness (N = 26). Neonatal cortical surfaces were reconstructed and parcellated as regions of interest (ROIs), and cortical thickness for each vertex was computed as the shortest distance between the inner and outer surfaces. Comparisons were made for the average cortical thickness and total surface area in each of 68 cortical ROIs. After false discovery rate (FDR) correction, it was found that the female high-genetic-risk neonates had significantly thinner cortical thickness in the right lateral occipital cortex than the female control neonates. Before FDR correction, the high-genetic-risk neonates had significantly thinner cortex in the left transverse temporal gyrus, left banks of superior temporal sulcus, left lingual gyrus, right paracentral cortex, right posterior cingulate cortex, right temporal pole, and right lateral occipital cortex, compared with the control neonates. Before FDR correction, in comparison with control neonates, male high-risk neonates had significantly thicker cortex in the left frontal pole, left cuneus cortex, and left lateral occipital cortex; while female high-risk neonates had significantly thinner cortex in the bilateral paracentral, bilateral lateral occipital, left transverse temporal, left pars opercularis, right cuneus, and right posterior cingulate cortices. The high-risk neonates also had significantly smaller cortical surface area in the right pars triangularis (before FDR correction), compared with control neonates. This preliminary study provides the first evidence that early development of cortical thickness and surface area might be abnormal in the neonates at genetic risk for schizophrenia.

Keywords

Schizophrenia Schizoaffective disorder High-risk Neonates Cortical surface area Cortical thickness 

Notes

Acknowledgments

The authors would like to thank the editor and anonymous reviewers for providing constructive and detailed suggestions that have improved this paper significantly. This work was supported in part by National Institutes of Health (grant numbers EB006733, EB008760, EB008374, EB009634, MH088520, MH070890, MH064065, MH100217, NS055754, and HD053000).

Conflict of interest

All authors report no potential conflicts of interest.

Supplementary material

429_2014_917_MOESM1_ESM.doc (423 kb)
Supplementary material 1 (DOC 423 kb)

References

  1. Aberg KA, Liu Y, Bukszar J, McClay JL, Khachane AN, Andreassen OA, Blackwood D, Corvin A, Djurovic S, Gurling H, Ophoff R, Pato CN, Pato MT, Riley B, Webb T, Kendler K, O’Donovan M, Craddock N, Kirov G, Owen M, Rujescu D, St Clair D, Werge T, Hultman CM, Delisi LE, Sullivan P, van den Oord EJ (2013) A comprehensive family-based replication study of schizophrenia genes. JAMA Psychiatry 70(2):1–9Google Scholar
  2. Black JE, Kodish IM, Grossman AW, Klintsova AY, Orlovskaya D, Vostrikov V, Uranova N, Greenough WT (2004) Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am J Psychiatry 161(4):742–744CrossRefPubMedGoogle Scholar
  3. Blumenthal JD, Zijdenbos A, Molloy E, Giedd JN (2002) Motion artifact in magnetic resonance imaging: implications for automated analysis. Neuroimage 16(1):89–92CrossRefPubMedGoogle Scholar
  4. Butler PD, Silverstein SM, Dakin SC (2008) Visual perception and its impairment in schizophrenia. Biol Psychiatry 64(1):40–47PubMedCentralCrossRefPubMedGoogle Scholar
  5. Byun MS, Kim JS, Jung WH, Jang JH, Choi JS, Kim SN, Choi CH, Chung CK, An SK, Kwon JS (2012) Regional cortical thinning in subjects with high genetic loading for schizophrenia. Schizophr Res 141(2–3):197–203CrossRefPubMedGoogle Scholar
  6. Cannon TD, van Erp TGM, Huttunen M, Lonnqvist J, Salonen O, Valanne L, Poutanen VP, Standertskjold-Nordenstam CG, Gur RE, Yan M (1998) Regional gray matter, white matter, and cerebrospinal fluid distributions in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 55(12):1084–1091CrossRefPubMedGoogle Scholar
  7. Chen CH, Fiecas M, Gutierrez ED, Panizzon MS, Eyler LT, Vuoksimaa E, Thompson WK, Fennema-Notestine C, Hagler DJ Jr, Jernigan TL, Neale MC, Franz CE, Lyons MJ, Fischl B, Tsuang MT, Dale AM, Kremen WS (2013) Genetic topography of brain morphology. Proc Natl Acad Sci USA 110(42):17089–17094PubMedCentralCrossRefPubMedGoogle Scholar
  8. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980CrossRefPubMedGoogle Scholar
  9. Einarson A, Boskovic R (2009) Use and safety of antipsychotic drugs during pregnancy. J Psychiatr Pract 15(3):183–192CrossRefPubMedGoogle Scholar
  10. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97(20):11050–11055PubMedCentralCrossRefPubMedGoogle Scholar
  11. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2):195–207CrossRefPubMedGoogle Scholar
  12. Gilmore JH, Kang C, Evans DD, Wolfe HM, Smith JK, Lieberman JA, Lin W, Hamer RM, Styner M, Gerig G (2010a) Prenatal and neonatal brain structure and white matter maturation in children at high risk for schizophrenia. Am J Psychiatry 167(9):1083–1091PubMedCentralCrossRefPubMedGoogle Scholar
  13. Gilmore JH, Schmitt JE, Knickmeyer RC, Smith JK, Lin W, Styner M, Gerig G, Neale MC (2010b) Genetic and environmental contributions to neonatal brain structure: a twin study. Hum Brain Mapp 31(8):1174–1182PubMedCentralPubMedGoogle Scholar
  14. Gilmore JH, Shi F, Woolson SL, Knickmeyer RC, Short SJ, Lin W, Zhu H, Hamer RM, Styner M, Shen D (2012) Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cereb Cortex 22(11):2478–2485PubMedCentralCrossRefPubMedGoogle Scholar
  15. Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57(1):65–73CrossRefPubMedGoogle Scholar
  16. Goghari VM, Rehm K, Carter CS, Macdonald AW (2007a) Sulcal thickness as a vulnerability indicator for schizophrenia. Brit J Psychiatry 191:229–233CrossRefGoogle Scholar
  17. Goghari VM, Rehm K, Carter CS, MacDonald AW 3rd (2007b) Regionally specific cortical thinning and gray matter abnormalities in the healthy relatives of schizophrenia patients. Cereb Cortex 17(2):415–424CrossRefPubMedGoogle Scholar
  18. Gogtay N, Greenstein D, Lenane M, Clasen L, Sharp W, Gochman P, Butler P, Evans A, Rapoport J (2007) Cortical brain development in nonpsychotic siblings of patients with childhood-onset schizophrenia. Arch Gen Psychiatry 64(7):772–780CrossRefPubMedGoogle Scholar
  19. Goldman AL, Pezawas L, Mattay VS, Fischl B, Verchinski BA, Chen Q, Weinberger DR, Meyer-Lindenberg A (2009) Widespread reductions of cortical thickness in schizophrenia and spectrum disorders and evidence of heritability. Arch Gen Psychiatry 66(5):467–477PubMedCentralCrossRefPubMedGoogle Scholar
  20. Gutierrez-Galve L, Wheeler-Kingshott CA, Altmann DR, Price G, Chu EM, Leeson VC, Lobo A, Barker GJ, Barnes TR, Joyce EM, Ron MA (2010) Changes in the frontotemporal cortex and cognitive correlates in first-episode psychosis. Biol Psychiatry 68(1):51–60PubMedCentralCrossRefPubMedGoogle Scholar
  21. Hanson JL, Hair N, Shen D, Shi F, Gilmore JH, Wolfe BL, Pollak SD (2013) Family poverty affects the rate of human infant brain growth. PLoS One 8(12):e80954Google Scholar
  22. Honea RA, Meyer-Lindenberg A, Hobbs KB, Pezawas L, Mattay VS, Egan MF, Verchinski B, Passingham RE, Weinberger DR, Callicott JH (2008) Is gray matter volume an intermediate phenotype for schizophrenia? A voxel-based morphometry study of patients with schizophrenia and their healthy siblings. Biol Psychiatry 63(5):465–474PubMedCentralCrossRefPubMedGoogle Scholar
  23. Insel TR (2010) Rethinking schizophrenia. Nature 468(7321):187–193CrossRefPubMedGoogle Scholar
  24. Ivleva EI, Bidesi AS, Keshavan MS, Pearlson GD, Meda SA, Dodig D, Moates AF, Lu HZ, Francis AN, Tandon N, Schretlen DJ, Sweeney JA, Clementz BA, Tamminga CA (2013) Gray matter volume as an intermediate phenotype for psychosis: bipolar-schizophrenia network on intermediate phenotypes (B-SNIP). Am J Psychiatry 170(11):1285–1296CrossRefPubMedGoogle Scholar
  25. Keshavan MS, Hogarty GE (1999) Brain maturational processes and delayed onset in schizophrenia. Dev Psychopathol 11(3):525–543CrossRefPubMedGoogle Scholar
  26. Keshavan M, Montrose DM, Rajarethinam R, Diwadkar V, Prasad K, Sweeney JA (2008) Psychopathology among offspring of parents with schizophrenia: relationship to premorbid impairments. Schizophr Res 103(1–3):114–120PubMedCentralCrossRefPubMedGoogle Scholar
  27. Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, Hamer RM, Lin W, Gerig G, Gilmore JH (2008) A structural MRI study of human brain development from birth to 2 years. J Neurosci 28(47):12176–12182PubMedCentralCrossRefPubMedGoogle Scholar
  28. Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F, Goff D, West WC, Williams SC, van der Kouwe AJ, Salat DH, Dale AM, Fischl B (2003) Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 60(9):878–888CrossRefPubMedGoogle Scholar
  29. Li G, Nie J, Wu G, Wang Y, Shen D (2012) Consistent reconstruction of cortical surfaces from longitudinal brain MR images. Neuroimage 59(4):3805–3820PubMedCentralCrossRefPubMedGoogle Scholar
  30. Li G, Nie J, Wang L, Shi F, Lin W, Gilmore JH, Shen D (2013a) Mapping region-specific longitudinal cortical surface expansion from birth to 2 years of age. Cereb Cortex 23(11):2724–2733PubMedCentralCrossRefPubMedGoogle Scholar
  31. Li G, Wang L, Shi F, Lin W, Shen D (2013b) Multi-atlas based simultaneous labeling of longitudinal dynamic cortical surfaces in infants. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N (eds) Medical image computing and computer-assisted intervention—MICCAI 2013, vol 8149., Lecture notes in computer scienceSpringer, Berlin Heidelberg, pp 58–65CrossRefGoogle Scholar
  32. Li G, Nie J, Wang L, Shi F, Gilmore JH, Lin W, Shen D (2014a) Measuring the dynamic longitudinal cortex development in infants by reconstruction of temporally consistent cortical surfaces. Neuroimage 90:266–279PubMedCentralCrossRefPubMedGoogle Scholar
  33. Li G, Nie J, Wang L, Shi F, Lyall AE, Lin W, Gilmore JH, Shen D (2014b) Mapping longitudinal hemispheric structural asymmetries of the human cerebral cortex from birth to 2 years of age. Cereb Cortex 24(5):1289–1300PubMedCentralCrossRefPubMedGoogle Scholar
  34. Li G, Wang L, Shi F, Lyall AE, Lin W, Gilmore JH, Shen D (2014c) Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age. J Neurosci 34(12):4228–4238PubMedCentralCrossRefPubMedGoogle Scholar
  35. Lotfipour S, Ferguson E, Leonard G, Perron M, Pike B, Richer L, Seguin JR, Toro R, Veillette S, Pausova Z, Paus T (2009) Orbitofrontal cortex and drug use during adolescence role of prenatal exposure to maternal smoking and BDNF genotype. Arch Gen Psychiatry 66(11):1244–1252CrossRefPubMedGoogle Scholar
  36. Lyall AE, Shi F, Geng X, Woolson S, Li G, Wang L, Hamer RM, Shen D, Gilmore JH (2014) Dynamic development of regional cortical thickness and surface area in early childhood. Cereb Cortex. doi: 10.1093/cercor/bhu027
  37. Marcus J, Hans SL, Auerbach JG, Auerbach AG (1993) Children at risk for schizophrenia: the Jerusalem Infant Development Study. II. Neurobehavioral deficits at school age. Arch Gen Psychiatry 50(10):797–809CrossRefPubMedGoogle Scholar
  38. Meng Y, Li G, Lin W, Gilmore JH, Shen D (2014) Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants. Neuroimage 100C:206–218CrossRefGoogle Scholar
  39. Mitelman SA, Shihabuddin L, Brickman AM, Hazlett EA, Buchsbaum MS (2003) MRI assessment of gray and white matter distribution in Brodmann’s areas of the cortex in patients with schizophrenia with good and poor outcomes. Am J Psychiatry 160(12):2154–2168CrossRefPubMedGoogle Scholar
  40. Montgomery DC (2013) Design and analysis of experiments, 8th edn. Wiley, HobokenGoogle Scholar
  41. Narr KL, Bilder RM, Toga AW, Woods RP, Rex DE, Szeszko PR, Robinson D, Sevy S, Gunduz-Bruce H, Wang YP, DeLuca H, Thompson PM (2005a) Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cereb Cortex 15(6):708–719CrossRefPubMedGoogle Scholar
  42. Narr KL, Toga AW, Szeszko P, Thompson PM, Woods RP, Robinson D, Sevy S, Wang Y, Schrock K, Bilder RM (2005b) Cortical thinning in cingulate and occipital cortices in first episode schizophrenia. Biol Psychiatry 58(1):32–40CrossRefPubMedGoogle Scholar
  43. Nie J, Li G, Wang L, Gilmore JH, Lin W, Shen D (2012) A computational growth model for measuring dynamic cortical development in the first year of life. Cereb Cortex 22(10):2272–2284PubMedCentralCrossRefPubMedGoogle Scholar
  44. Nie J, Li G, Shen D (2013) Development of cortical anatomical properties from early childhood to early adulthood. Neuroimage 76:216–224Google Scholar
  45. Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, Jacobson K, Lyons MJ, Grant MD, Franz CE, Xian H, Tsuang M, Fischl B, Seidman L, Dale A, Kremen WS (2009) Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex 19(11):2728–2735PubMedCentralCrossRefPubMedGoogle Scholar
  46. Prasad KM, Goradia D, Eack S, Rajagopalan M, Nutche J, Magge T, Rajarethinam R, Keshavan MS (2010) Cortical surface characteristics among offspring of schizophrenia subjects. Schizophr Res 116(2–3):143–151PubMedCentralCrossRefPubMedGoogle Scholar
  47. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, Sklar P (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460(7256):748–752PubMedGoogle Scholar
  48. Radonic E, Rados M, Kalember P, Bajs-Janovic M, Folnegovic-Smalc V, Henigsberg N (2011) Comparison of hippocampal volumes in schizophrenia, schizoaffective and bipolar disorder. Collegium Antropol 35:249–252Google Scholar
  49. Rajarethinam R, Sahni S, Rosenberg DR, Keshavan MS (2004) Reduced superior temporal gyrus volume in young offspring of patients with schizophrenia. Am J Psychiatry 161(6):1121–1124CrossRefPubMedGoogle Scholar
  50. Rakic P (1988) Specification of cerebral cortical areas. Science 241(4862):170–176CrossRefPubMedGoogle Scholar
  51. Rapoport JL, Addington AM, Frangou S, Psych MR (2005) The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 10(5):434–449CrossRefPubMedGoogle Scholar
  52. Reichenberg A, Caspi A, Harrington H, Houts R, Keefe RS, Murray RM, Poulton R, Moffitt TE (2010) Static and dynamic cognitive deficits in childhood preceding adult schizophrenia: a 30-year study. Am J Psychiatry 167(2):160–169PubMedCentralCrossRefPubMedGoogle Scholar
  53. Rimol LM, Nesvag R, Hagler DJ Jr, Bergmann O, Fennema-Notestine C, Hartberg CB, Haukvik UK, Lange E, Pung CJ, Server A, Melle I, Andreassen OA, Agartz I, Dale AM (2012) Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder. Biol Psychiatry 71(6):552–560CrossRefPubMedGoogle Scholar
  54. Ross RG (2010) Neuroimaging the infant: the application of modern neurobiological methods to the neurodevelopmental hypothesis of schizophrenia. Am J Psychiatry 167(9):1017–1019CrossRefPubMedGoogle Scholar
  55. Ross RG, Compagnon N (2001) Diagnosis and treatment of psychiatric disorders in children with a schizophrenic parent. Schizophr Res 50(1–2):121–129CrossRefPubMedGoogle Scholar
  56. Selemon LD, Rajkowska G, Goldman-Rakic PS (1995) Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 52(10):805–818 (discussion 819–820)CrossRefPubMedGoogle Scholar
  57. Shi F, Yap PT, Fan Y, Gilmore JH, Lin W, Shen D (2010) Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation. Neuroimage 51(2):684–693Google Scholar
  58. Shi F, Yap PT, Wu G, Jia H, Gilmore JH, Lin W, Shen D (2011) Infant brain atlases from neonates to 1- and 2-year-olds. PLoS One 6(4):e18746PubMedCentralCrossRefPubMedGoogle Scholar
  59. Shi F, Yap PT, Gao W, Lin W, Gilmore JH, Shen D (2012) Altered structural connectivity in neonates at genetic risk for schizophrenia: a combined study using morphological and white matter networks. Neuroimage 62(3):1622–1633PubMedCentralCrossRefPubMedGoogle Scholar
  60. Sorensen HJ, Mortensen EL, Schiffman J, Reinisch JM, Maeda J, Mednick SA (2010) Early developmental milestones and risk of schizophrenia: a 45-year follow-up of the Copenhagen Perinatal Cohort. Schizophr Res 118(1–3):41–47PubMedCentralCrossRefPubMedGoogle Scholar
  61. Sowell ER, Mattson SN, Kan E, Thompson PM, Riley EP, Toga AW (2008) Abnormal cortical thickness and brain-behavior correlation patterns in individuals with heavy prenatal alcohol exposure. Cereb Cortex 18(1):136–144PubMedCentralCrossRefPubMedGoogle Scholar
  62. Sprooten E, Papmeyer M, Smyth AM, Vincenz D, Honold S, Conlon GA, Moorhead TW, Job D, Whalley HC, Hall J, McIntosh AM, Owens DC, Johnstone EC, Lawrie SM (2013) Cortical thickness in first-episode schizophrenia patients and individuals at high familial risk: a cross-sectional comparison. Schizophr Res 151(1–3):259–264CrossRefPubMedGoogle Scholar
  63. Sullivan PF (2005) The genetics of schizophrenia. PLoS Med 2(7):e212PubMedCentralCrossRefPubMedGoogle Scholar
  64. Thermenos HW, Keshavan MS, Juelich RJ, Molokotos E, Whitfield-Gabrieli S, Brent BK, Makris N, Seidman LJ (2013) A review of neuroimaging studies of young relatives of individuals with schizophrenia: a developmental perspective from schizotaxia to schizophrenia. Am J Med Genet B 162(7):604–635CrossRefGoogle Scholar
  65. Toro R, Leonard G, Lerner JV, Lerner RM, Perron M, Pike GB, Richer L, Veillette S, Pausova Z, Paus T (2008) Prenatal exposure to maternal cigarette smoking and the adolescent cerebral cortex. Neuropsychopharmacology 33(5):1019–1027CrossRefPubMedGoogle Scholar
  66. Van Essen DC (2005) A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28(3):635–662CrossRefPubMedGoogle Scholar
  67. Wang L, Shi F, Lin W, Gilmore JH, Shen D (2011) Automatic segmentation of neonatal images using convex optimization and coupled level sets. Neuroimage 58:805–817Google Scholar
  68. Wang L, Shi F, Li G, Gao Y, Lin W, Gilmore JH, Shen D (2013) Segmentation of neonatal brain MR images using patch-driven level sets. Neuroimage 84C:141–158Google Scholar
  69. Wang L, Shi F, Gao Y, Li G, Gilmore JH, Lin W, Shen D (2014) Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation. Neuroimage 89:152–164PubMedCentralCrossRefPubMedGoogle Scholar
  70. Woodberry KA, Giuliano AJ, Seidman LJ (2008) Premorbid IQ in schizophrenia: a meta-analytic review. Am J Psychiatry 165(5):579–587CrossRefPubMedGoogle Scholar
  71. Yang Y, Roussotte F, Kan E, Sulik KK, Mattson SN, Riley EP, Jones KL, Adnams CM, May PA, O’Connor MJ, Narr KL, Sowell ER (2012) Abnormal cortical thickness alterations in fetal alcohol spectrum disorders and their relationships with facial dysmorphology. Cereb Cortex 22(5):1170–1179PubMedCentralCrossRefPubMedGoogle Scholar
  72. Yap PT, Fan Y, Chen Y, Gilmore JH, Lin W, Shen D (2011) Development trends of white matter connectivity in the first years of life. PLoS One 6(9):e24678Google Scholar
  73. Ziermans TB, Schothorst PF, Schnack HG, Koolschijn PC, Kahn RS, van Engeland H, Durston S (2012) Progressive structural brain changes during development of psychosis. Schizophr Bull 38(3):519–530PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gang Li
    • 1
    • 5
  • Li Wang
    • 1
  • Feng Shi
    • 1
  • Amanda E. Lyall
    • 3
  • Mihye Ahn
    • 4
  • Ziwen Peng
    • 1
  • Hongtu Zhu
    • 4
  • Weili Lin
    • 1
  • John H. Gilmore
    • 3
  • Dinggang Shen
    • 1
    • 5
    • 2
    Email author
  1. 1.Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Department of Brain and Cognitive EngineeringKorea UniversitySeoulRepublic of Korea
  3. 3.Department of PsychiatryUniversity of North Carolina at Chapel HillChapel HillUSA
  4. 4.Department of Biostatistics and BRICUniversity of North Carolina at Chapel HillChapel HillUSA
  5. 5.Radiology and BRIC, UNC-CH School of MedicineChapel HillUSA

Personalised recommendations