Skip to main content
Log in

Adaptation in human somatosensory cortex as a model of sensory memory construction: a study using high-density EEG

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Adaptation in sensory cortices has been seen as a mechanism allowing the creation of transient memory representations. Here we tested the adapting properties of early responses in human somatosensory areas SI and SII by analysing somatosensory-evoked potentials over the very first repetitions of a stimulus. SI and SII generators were identified by well-defined scalp potentials and source localisation from high-density 128-channel EEG. Earliest responses (~20 ms) from area 3b in the depth of the post-central gyrus did not show significant adaptation to stimuli repeated at 300 ms intervals. In contrast, responses around 45 ms from the crown of the gyrus (areas 1 and 2) rapidly lessened to a plateau and abated at the 20th stimulation, and activities from SII in the parietal operculum at ~100 ms displayed strong adaptation with a steady amplitude decrease from the first repetition. Although responses in both SI (1–2) and SII areas showed adapting properties and hence sensory memory capacities, evidence of sensory mismatch detection has been demonstrated only for responses reflecting SII activation. This may index the passage from an early form of sensory storage in SI to more operational memory codes in SII, allowing the prediction of forthcoming input and the triggering of a specific signal when such input differs from the previous sequence. This is consistent with a model whereby the length of temporal receptive windows increases with progression in the cortical hierarchy, in parallel with the complexity and abstraction of neural representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Initially, stimulation rate was 2 Hz; it was increased to 3 Hz during the course of the study for time reasons. Therefore, participants received one of the two stimulation rates and never both. In our data, there was no significant or systematic difference in responses recorded using these two rates; the data were therefore pooled.

  2. Amplitude of initial SI-3b responses is known to decline with repetition rates around 10 Hz and higher (e.g. McLaughlin et al 1993 for a review).

References

  • Akatsuka K, Wasaka T, Nakata H, Kida T, Kakigi R (2007) The effect of stimulus probability on the somatosensory mismatch field. Exp Brain Res 181:607–614

    Article  PubMed  Google Scholar 

  • Alain C, Woods DL, Knight RT (1998) A distributed cortical network for auditory sensory memory in humans. Brain Res 812:23–37

    Article  CAS  PubMed  Google Scholar 

  • Allison T, McCarthy G, Wood C, Darcey T, Spencer D, Williamson P (1989a) Human cortical potentials evoked by stimulation of the median nerve. I. Cytoarchitectonic areas generating short-latency activity. J Neurophysiol 62(3):694–710

    CAS  PubMed  Google Scholar 

  • Allison T, McCarthy G, Wood CC, Williamson PD, Spencer DD (1989b) Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity. J Neurophysiol 62(3):711–722

    CAS  PubMed  Google Scholar 

  • Allison T, McCarthy G, Wood CC, Jones SJ (1991) Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain 114(6):2465–2503

    Article  PubMed  Google Scholar 

  • Allison T, McCarthy G, Wood CC (1992) The relationship between human long-latency somatosensory evoked potentials recorded from the cortical surface and from the scalp. Electroencephalogr Clin Neurophysiol 84(4):301–314

    Article  CAS  PubMed  Google Scholar 

  • Barba C, Frot M, Mauguière F (2002) Early secondary somatosensory area (SII) SEPs. Data from intracerebral recordings in humans. Clin Neurophysiol 113(11):1778–1786

    Article  PubMed  Google Scholar 

  • Baumgärtner U, Vogel H, Ohara S, Treede RD, Lenz FA (2010) Dipole source analyses of early median nerve SEP components obtained from subdural grid recordings. J Neurophysiol 104(6):3029–3041

    Article  PubMed Central  PubMed  Google Scholar 

  • Brody CD, Romo R, Kepecs A (2003) Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Curr Opin Neurobiol 13:204–211

    Article  CAS  PubMed  Google Scholar 

  • Buchner H, Waberski TD, Fuchs M, Drenckhahn R, Wagner M, Wischmann HA (1996) Postcentral origin of P22: evidence from source reconstruction in a realistically shaped head model and from a patient with a postcentral lesion. Electroencephalogr Clin Neurophysiol 100(4):332–342

    Article  CAS  PubMed  Google Scholar 

  • Coltheart M (1980) The persistences of vision. Philos Trans R Soc Lond B Biol Sci 290(1038):57–69

    Article  CAS  PubMed  Google Scholar 

  • Cruccu G, Aminoff MJ, Curio G, Guerit JM, Kakigi R, Mauguière F, Rossini PM, Treede RD, Garcia-Larrea L (2008) Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol 119(8):1705–1719

    Article  CAS  PubMed  Google Scholar 

  • Csépe V, Karmos G, Molnár M (1987) Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat–animal model of mismatch negativity. Electroencephalogr Clin Neurophysiol 66:571–578

    Article  PubMed  Google Scholar 

  • Desmedt JE, Robertson D (1977) Differential enhancement of early and late components of the cerebral somatosensory evoked potentials during forced-paced cognitive tasks in man. J Physiol 271(3):761–782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Desmedt JE, Huy NT, Bourguet M (1983) The cognitive P40, N60 and P100 components of somatosensory evoked potentials and the earliest electrical signs of sensory processing in man. Electroencephalogr Clin Neurophysiol 56(4):272–282

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Larrea L, Bastuji H, Mauguière F (1991) Mapping study of somatosensory evoked potentials during selective spatial attention. Electroencephalogr Clin Neurophysiol 80(3):201–214

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Larrea L, Bastuji H, Mauguière F (1992) Unmasking of cortical SEP components by changes in stimulus rate: a topographic study. Electroencephalogr Clin Neurophysiol 84(1):71–83

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Larrea L, Lukaszewicz AC, Mauguière F (1995) Somatosensory responses during selective spatial attention: The N120-to-N140 transition. Psychophysiology 32(6):526–537

    Article  CAS  PubMed  Google Scholar 

  • Garraghty PE, Florence SL, Kaas JH (1990) Ablations of areas 3a and 3b of monkey somatosensory cortex abolish cutaneous responsivity in area 1. Brain Res 528(1):165–169

    Article  CAS  PubMed  Google Scholar 

  • Goldman MS (2009) Memory without feedback in a neural network. Neuron 61(4):621–634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grill-Spector K, Henson R, Martin A (2006) Repetition and the brain: neural models of stimulus-specific effects. Trends in cognitive sciences 10(1):14–23

    Article  PubMed  Google Scholar 

  • Hari R, Reinikainen K, Kaukoranta E, Hämäläinen M, Ilmoniemi R, Penttinen A, Salminen J, Teszner D (1984) Somatosensory evoked cerebral magnetic fields from SI and SII in man. Electroencephalogr Clin Neurophysiol 57(3):254–263

    Article  CAS  PubMed  Google Scholar 

  • Hari R, Karhu J, Hämäläinen M, Knuutila J, Salonen O, Sams M, Vilkman V (1993) Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5(6):724–734

    Article  CAS  PubMed  Google Scholar 

  • Harris JA, Miniussi C, Harris IM, Diamond ME (2002) Transient storage of a tactile memory trace in primary somatosensory cortex. J Neurosci 22(19):8720–8725

    CAS  PubMed  Google Scholar 

  • Hernández A, Zainos A, Romo R (2000) Neuronal correlates of sensory discrimination in the somatosensory cortex. Proc Natl Acad Sci USA 97(11):6191–6196

    Article  PubMed Central  PubMed  Google Scholar 

  • Hernández A, Zainos A, Romo R (2002) Temporal evolution of a decision-making process in medial premotor cortex. Neuron 33(6):959–972

    Article  PubMed  Google Scholar 

  • Hinkley LB, Krubitzer LA, Nagarajan SS, Disbrow EA (2007) Sensorimotor integration in S2, PV, and parietal rostroventral areas of the human sylvian fissure. J Neurophysiol 97(2):1288–1297

    Article  PubMed Central  PubMed  Google Scholar 

  • Höffken O, Tannwitz J, Lenz M, Sczesny-Kaiser M, Tegenthoff M, Schwenkreis P (2013) Influence of parameter settings on paired-pulse-suppression in somatosensory evoked potentials: a systematic analysis. Clin Neurophysiol 124(3):574–580

    Article  PubMed  Google Scholar 

  • Hoshiyama M, Kakigi R (2003) Changes in somatosensory evoked responses by repetition of the median nerve stimulation. Clin Neurophysiol 114(12):2251–2257

    Article  PubMed  Google Scholar 

  • Hu L, Zhao C, Li H, Valentini E (2013) Mismatch responses evoked by nociceptive stimuli. Psychophysiology 50:158–173

    Article  CAS  PubMed  Google Scholar 

  • Huttunen J, Pekkonen E, Kivisaari R, Autti T, Kähkönen S (2008) Modulation of somatosensory evoked fields from SI and SII by acute GABA A-agonism and paired-pulse stimulation. NeuroImage 40(2):427–434

    Article  PubMed  Google Scholar 

  • Hyvarinen J, Poranen A (1978) Receptive field integration and submodality convergence in the hand area of the postcentral gyrus of the alert monkey. J Physiol 283:539–556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inui K, Wang X, Tamura Y, Kaneoke Y, Kakigi R (2004) Serial processing in the human somatosensory system. Cereb Cortex 14(8):851–857

    Article  PubMed  Google Scholar 

  • Iwamura Y (1998) Hierarchical somatosensory processing. Curr Opin Neurobiol 8:522–528

    Article  CAS  PubMed  Google Scholar 

  • Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1985) Diversity in receptive field properties of vertical neuronal arrays in the crown of the postcentral gyrus of the conscious monkey. Exp Brain Res 58:400–411

    CAS  PubMed  Google Scholar 

  • Jääskeläinen IP, Ahveninen J, Andermann ML, Belliveau JW, Raij T, Sams M (2011) Short-term plasticity as a neural mechanism supporting memory and attentional functions. Brain Res 1422:66–81

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones SJ, Power CN (1984) Scalp topography of human somatosensory evoked potentials: the effect of interfering tactile stimulation applied to the hand. Electroencephalogr Clin Neurophysiol 58(1):25–36

    Article  CAS  PubMed  Google Scholar 

  • Josiassen RC, Shagass C, Roemer RA, Ercegovac DV, Straumanis JJ (1982) Somatosensory evoked potential changes with a selective attention task. Psychophysiology 19(2):146–159

    Article  CAS  PubMed  Google Scholar 

  • Jung P, Baumgärtner U, Bauermann T, Magerl W, Gawehn J, Stoeter P, Treede RD (2003) Asymmetry in the human primary somatosensory cortex and handedness. Neuroimage 19(3):913–923

    Article  PubMed  Google Scholar 

  • Jung P, Baumgärtner U, Magerl W, Treede RD (2008) Hemispheric asymmetry of hand representation in human primary somatosensory cortex and handedness. Clin Neurophysiol 119(11):2579–2586

    Article  PubMed  Google Scholar 

  • Kaas JH (2004) Evolution of somatosensory and motor cortex in primates. Anat Rec A Discov Mol Cell Evol Biol 281:1148–1156

    Article  PubMed  Google Scholar 

  • Karhu J, Tesche CD (1999) Simultaneous early processing of sensory input in human primary (SI) and secondary (SII) somatosensory cortices. J Neurophysiol 81(5):2017–2025

    CAS  PubMed  Google Scholar 

  • Kekoni J, Tiihonen J, Hämäläinen H (1992) Fast decrement with stimulus repetition in ERPs generated by neuronal systems involving somatosensory SI and SII cortices: electric and magnetic evoked response recordings in humans. Int J Psychophysiol 12(3):281–288

    Article  CAS  PubMed  Google Scholar 

  • Kekoni J, Hämäläinen H, Saarinen M, Gröhn J, Reinikainen K, Lehtokoski A, Näätänen R (1997) Rate effect and mismatch responses in the somatosensory system: ERP-recordings in humans. Biol Psychol 46:125–142

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Ohira H, Schröger E (2010) Localizing sensory and cognitive systems for pre-attentive visual deviance detection: an sLORETA analysis of the data of Kimura et al. (2009). Neurosci Lett 485(3):198–203

    Article  CAS  PubMed  Google Scholar 

  • Klingner CM, Nenadic I, Hasler C, Brodoehl S, Witte OW (2011) Habituation within the somatosensory processing hierarchy. Behav Brain Res 225(2):432–436

    Article  PubMed  Google Scholar 

  • Knecht S, Kunesch E, Schnitzler A (1996) Parallel and serial processing of haptic information in man: effects of parietal lesions on sensorimotor hand function. Neuropsychologia 34(7):669–687

    Article  CAS  PubMed  Google Scholar 

  • Kojima T, Karino S, Yumoto M, Funayama M (2014) A stroke patient with impairment of auditory sensory (echoic) memory. Neurocase 20:133–143

    Article  CAS  PubMed  Google Scholar 

  • Krubitzer LA, Calford MB (1992) Five topographically organized fields in the somatosensory cortex of the flying fox: microelectrode maps, myeloarchitecture, and cortical modules. J Comp Neurol 317:1–30

    Article  CAS  PubMed  Google Scholar 

  • Kujala T, Näätänen R (2010) The adaptive brain: a neurophysiological perspective. Prog Neurobiol 91(1):55–67

    Article  PubMed  Google Scholar 

  • Kutoku Y, Hagiwara H, Ichikawa Y, Takeda K, Sunada Y (2007) A case of combined sensation disturbance and clumsiness of the left hand caused by an infarction localized to Brodmann areas 1 and 2. Rinsho Shinkeigaku 47:151–155

    PubMed  Google Scholar 

  • Lenz M, Tegenthoff M, Kohlhaas K, Stude P, Höffken O, Gatica Tossi MA, Kalisch T, Kowalewski R, Dinse HR (2012) Increased excitability of somatosensory cortex in aged humans is associated with impaired tactile acuity. J Neurosci 32(5):1811–1816

    Article  CAS  PubMed  Google Scholar 

  • Lu ZL, Williamson SJ, Kaufman L (1992) Behavioral lifetime of human auditory sensory memory predicted by physiological measures. Science 258(5088):1668–1670

    Article  CAS  PubMed  Google Scholar 

  • Maess B, Jacobsen T, Schröger E, Friederici AD (2007) Localizing pre-attentive auditory memory-based comparison: magnetic mismatch negativity to pitch change. Neuroimage 37:561–571

    Article  PubMed  Google Scholar 

  • Mauguière F, Desmedt JE (1991) Focal capsular vascular lesions can selectively deafferent the prerolandic or the parietal cortex: somatosensory evoked potentials evidence. Ann Neurol 30(1):71–75

    Article  PubMed  Google Scholar 

  • Mauguière F, Desmedt JE, Courjon J (1983) Astereognosis and dissociated loss of frontal or parietal components of somatosensory evoked potentials in hemispheric lesions. Detailed correlations with clinical signs and computerized tomographic scanning. Brain 106(Pt 2):271–311

    Article  PubMed  Google Scholar 

  • Mauguière F, Merlet I, Forss N, Vanni S, Jousmäki V, Adeleine P, Hari R (1997) Activation of a distributed somatosensory cortical network in the human brain. A dipole modelling study of magnetic fields evoked by median nerve stimulation. Part I: location and activation timing of SEF sources. Electroencephalogr Clin Neurophysiol 104(4):281–289

    Article  PubMed  Google Scholar 

  • Mauguière F, Butler SR, Ceranic B, Cooper R, Holder JE, Luxon LM (2004) Evoked potentials; Normal findings by modality. In: Binnie C et al (eds) Clinical neurophysiology, vol. 1 (revised and enlarged edition) EMG, nerve conduction and evoked potentials. Elsevier, pp 429–462

  • Maule F, Barchiesi G, Brochier T, Cattaneo L (2013) Haptic working memory for grasping: the role of the parietal operculum. Cereb Cortex. doi:10.1093/cercor/bht252

  • McLaughlin DF, Kelly EF (1993) Evoked potentials as indices of adaptation in the somatosensory system in humans: a review and prospectus. Brain Res Brain Res Rev 18(2):151–206

    Article  CAS  PubMed  Google Scholar 

  • Mountcastle VB, Powell TP (1959) Central nervous mechanisms subserving position sense and kinesthesis. Bull Johns Hopkins Hosp 105:173–200

    CAS  PubMed  Google Scholar 

  • Näätänen R, Alho K (1995) Generators of electrical and magnetic mismatch responses in humans. Brain Topogr 7(4):315–320

    Article  PubMed  Google Scholar 

  • Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24(4):375–425

    Article  PubMed  Google Scholar 

  • Nagamine T, Mäkelä J, Mima T, Mikuni N, Nishitani N, Satoh T, Akio Ikeda, Shibasaki H (1998) Serial processing of the somesthetic information revealed by different effects of stimulus rate on the somatosensory-evoked potentials and magnetic fields. Brain Res 791(1–2):200–208

    Article  CAS  PubMed  Google Scholar 

  • Onishi H, Sugawara K, Yamashiro K, Sato D, Suzuki M, Kirimoto H, Tamaki H, Murakami H, Kameyama S (2013) Neuromagnetic activation following active and passive finger movements. Brain Behav 3(2):178–192

    Article  PubMed Central  PubMed  Google Scholar 

  • Overduin SA, Servos P (2004) Distributed digit somatotopy in primary somatosensory cortex. Neuroimage 23(2):462–472

    Article  PubMed  Google Scholar 

  • Papadelis C, Eickhoff SB, Zilles K, Ioannides AA (2011) BA3b and BA1 activate in a serial fashion after median nerve stimulation: direct evidence from combining source analysis of evoked fields and cytoarchitectonic probabilistic maps. Neuroimage 54(1):60–73

    Article  PubMed  Google Scholar 

  • Pasternak T, Greenlee MW (2005) Working memory in primate sensory systems. Nat Rev Neurosci 6(2):97–107

    Article  CAS  PubMed  Google Scholar 

  • Pons TP, Garraghty PE, Mishkin M (1992) Serial and parallel processing of tactual information in somatosensory cortex of rhesus monkeys. J Neurophysiol 68(2):518–527

    CAS  PubMed  Google Scholar 

  • Randolf M, Semmes J (1974) Behavioral consequences of selective subtotal ablations in the postcentral gyrus of Macaca mulatta. Brain Res 70:155–170

    Google Scholar 

  • Romani A, Bergamaschi R, Versino M, Callieco R, Calabrese G, Cosi V (1995) Recovery functions of early cortical median nerve SSEP components: normative data. Electroencephalogr Clin Neurophysiol 96(5):475–478

    Article  CAS  PubMed  Google Scholar 

  • Romo R, Hernández A, Zainos A, Brody C, Salinas E (2002a) Exploring the cortical evidence of a sensory-discrimination process. Philos Trans R Soc Lond B Biol Sci 357(1424):1039–1051

    Article  PubMed Central  PubMed  Google Scholar 

  • Romo R, Hernández A, Zainos A, Lemus L, Brody CD (2002b) Neuronal correlates of decision-making in secondary somatosensory cortex. Nat Neurosci 5(11):1217–1225

    Article  CAS  PubMed  Google Scholar 

  • Salinas E, Hernández A, Zainos A, Romo R (2000) Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli. J Neurosci 20(14):5503–5515

    CAS  PubMed  Google Scholar 

  • Schubert R, Ritter P, Wüstenberg T, Preuschhof C, Curio G, Sommer W, Villringer A (2008) Spatial attention related SEP amplitude modulations covary with BOLD signal in S1—a simultaneous EEG–fMRI study. Cereb Cortex 18(11):2686–2700

    Article  PubMed  Google Scholar 

  • Seung HS (1996) How the brain keeps the eyes still. Proc Natl Acad Sci USA 93:13339–13344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seung HS, Lee DD, Reis BY, Tank DW (2000) Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26:259–271

    Article  CAS  PubMed  Google Scholar 

  • Thees S, Blankenburg F, Taskin B, Curio G, Villringer A (2003) Dipole source localization and fMRI of simultaneously recorded data applied to somatosensory categorization. NeuroImage 18(3):707–719

    Article  CAS  PubMed  Google Scholar 

  • Thompson RF (2009) Habituation: a history. Neurobiol Learn Mem 92(2):127–134

    Article  PubMed Central  PubMed  Google Scholar 

  • Tomberg C, Desmedt JE, Ozaki I, Nguyen TH, Chalklin V (1989) Mapping somatosensory evoked potentials to finger stimulation at intervals of 450 to 4000 msec and the issue of habituation when assessing early cognitive components. Electroencephalogr Clin Neurophysiol 74(5):347–358

    Article  CAS  PubMed  Google Scholar 

  • Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6(4):391–398

    Article  CAS  PubMed  Google Scholar 

  • Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24(46):10440–10453

    Article  CAS  PubMed  Google Scholar 

  • Valeriani M, Restuccia D, Di Lazzaro V, Le Pera D, Scerrati M, Tonali P, Mauguière F (1997) Giant central N20-P22 with normal area 3b N20-P20: an argument in favour of an area 3a generator of early median nerve cortical SEPs? Electroencephalogr Clin Neurophysiol 104(1):60–67

    Article  CAS  PubMed  Google Scholar 

  • Weiland BJ, Boutros NN, Moran JM, Tepley N, Bowyer SM (2008) Evidence for a frontal cortex role in both auditory and somatosensory habituation: a MEG study. NeuroImage 42(2):827–835

    Article  PubMed Central  PubMed  Google Scholar 

  • Wikström H, Huttunen J, Korvenoja A, Virtanen J, Salonen O, Aronen H, Ilmoniemi RJ (1996) Effects of interstimulus interval on somatosensory evoked magnetic fields (SEFs): a hypothesis concerning SEF generation at the primary sensorimotor cortex. Electroencephalogr Clin Neurophysiol 100(6):479–487

    Article  PubMed  Google Scholar 

  • Zhou Y-D, Fuster JM (1996) Mnemonic neuronal activity in somatosensory cortex. Proc Natl Acad Sci USA 93(19):10533–10537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are most grateful to Bérengère Houzé and Caroline Perchet for help with data collection, to Michel Magnin for insightful discussion on the manuscript and to two anonymous reviewers for their important comments. This work was supported by Grants from National Agency for Research (LABEX CORTEX, ANR-11-LABX-0042), SFETD Translational prize, Rhône-Alpes Region, APICIL Foundation and French Ministère de l’Enseignement Supérieur et de la Recherche (ENS Cachan), as well as the Lyon-Manchester Erasmus Program.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Bradley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bradley, C., Joyce, N. & Garcia-Larrea, L. Adaptation in human somatosensory cortex as a model of sensory memory construction: a study using high-density EEG. Brain Struct Funct 221, 421–431 (2016). https://doi.org/10.1007/s00429-014-0915-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0915-5

Keywords

Navigation