Brain Structure and Function

, Volume 221, Issue 1, pp 133–145 | Cite as

Adolescent nicotine-induced dendrite remodeling in the nucleus accumbens is rapid, persistent, and D1-dopamine receptor dependent

  • D. G. EhlingerEmail author
  • H. C. Bergstrom
  • J. C. Burke
  • G. M. Fernandez
  • C. G. McDonald
  • R. F. Smith
Original Article


Chronic nicotine exposure during adolescence induces dendritic remodeling of medium spiny neurons (MSNs) in the nucleus accumbens (NAcc) shell. While nicotine-induced dendritic remodeling has frequently been described as persistent, the trajectory of dendrite remodeling is unknown. Specifically, no study to date has characterized the structural plasticity of dendrites in the NAcc immediately following chronic nicotine, leaving open the possibility that dendrite remodeling emerges gradually over time. Further, the neuropharmacological mechanisms through which nicotine induces dendrite remodeling are not well understood. To address these questions, rats were co-administered chronic nicotine (0.5 mg/kg) and the D1-dopamine receptor (D1DR) antagonist SCH-23390 (0.05 mg/kg) subcutaneously every other day during adolescence. Brains were then processed for Golgi–Cox staining either 1 day or 21 days following drug exposure and dendrites from MSNs in the NAcc shell digitally reconstructed in 3D. Spine density was also measured at both time points. Our morphometric results show (1) the formation of new dendritic branches and spines 1 day following nicotine exposure, (2) new dendritic branches, but not spine density, remains relatively stable for at least 21 days, (3) the co-administration of SCH-23390 completely blocked nicotine-induced dendritic remodeling of MSNs at both early and late time points, suggesting the formation of new dendritic branches in response to nicotine is D1DR-dependent, and (4) SCH-23390 failed to block nicotine-induced increases in spine density. Overall this study provides new insight into how nicotine influences the normal trajectory of adolescent brain development and demonstrates a persistent form of nicotine-induced neuroplasticity in the NAcc shell that develops rapidly and is D1DR dependent.


Nicotine Adolescence Dendrite morphology Dopamine D1 receptor Dendritic spine 



We would like to thank David Meyers and Ebube Utomi for animal care. The work was supported by a grant from the Virginia Foundation for Healthy Youth.

Conflict of interest

The authors declare no conflict of interest.


  1. Acquas E, Carboni E, Leone P, Di Chiara G (1989) SCH 23390 blocks drug-conditioned place-preference and place-aversion: anhedonia (lack of reward) or apathy (lack of motivation) after dopamine-receptor blockade? Psychopharmacology 99(2):151–155CrossRefPubMedGoogle Scholar
  2. Arikkath J (2012) Molecular mechanisms of dendrite morphogenesis. Front Cell Neurosci 6:61PubMedCentralCrossRefPubMedGoogle Scholar
  3. Aubert I, Ghorayeb I, Normand E, Bloch B (2000) Phenotypical characterization of the neurons expressing the D1 and D2 dopamine receptors in the monkey striatum. J Comp Neurol 418(1):22–32CrossRefPubMedGoogle Scholar
  4. Baler RD, Volkow ND (2011) Addiction as a systems failure: focus on adolescence and smoking. J Am Acad Child Adolesc Psychiatry 50(4):329–339PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bergstrom HC, Smith RF, Mollinedo NS, McDonald CG (2010) Chronic nicotine exposure produces lateralized, age-dependent dendritic remodeling in the rodent basolateral amygdala. Synapse 64(10):754–764PubMedGoogle Scholar
  6. Bracken AL, Chambers RA, Berg SA, Rodd ZA, McBride WJ (2011) Nicotine exposure during adolescence enhances behavioral sensitivity to nicotine during adulthood in Wistar rats. Pharmacol Biochem Behav 99(1):87–93PubMedCentralCrossRefPubMedGoogle Scholar
  7. Brielmaier JM, McDonald CG, Smith RF (2007) Immediate and long-term behavioral effects of a single nicotine injection in adolescent and adult rats. Neurotoxicol Teratol 29(1):74–80CrossRefPubMedGoogle Scholar
  8. Brielmaier JM, McDonald CG, Smith RF (2008) Nicotine place preference in a biased conditioned place preference design. Pharmacol Biochem Behav 89(1):94–100CrossRefPubMedGoogle Scholar
  9. Brown RW, Kolb B (2001) Nicotine sensitization increases dendritic length and spine density in the nucleus accumbens and cingulate cortex. Brain Res 899(1–2):94–100CrossRefPubMedGoogle Scholar
  10. Chklovskii DB (2004) Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron 43(5):609–617PubMedGoogle Scholar
  11. Corrigall WA, Coen KM (1991) Selective dopamine antagonists reduce nicotine self-administration. Psychopharmacology 104(2):171–176CrossRefPubMedGoogle Scholar
  12. Di Chiara G (2000) Role of dopamine in the behavioural actions of nicotine related to addiction. Eur J Pharmacol 393(1–3):295–314CrossRefPubMedGoogle Scholar
  13. Di Chiara G, Tanda G, Bassareo V, Pontieri F, Acquas E, Fenu S, Cadoni C, Carboni E (1999) Drug addiction as a disorder of associative learning. Role of nucleus accumbens shell/extended amygdala dopamine. Ann N Y Acad Sci 877:461–485CrossRefPubMedGoogle Scholar
  14. Dillon C, Goda Y (2005) The actin cytoskeleton: integrating form and function at the synapse. Annu Rev Neurosci 28:25–55CrossRefPubMedGoogle Scholar
  15. Ehlinger DG, Bergstrom HC, McDonald CG, Smith RF (2012) Nicotine-induced dendritic remodeling in the insular cortex. Neurosci Lett 516(1):89–93CrossRefPubMedGoogle Scholar
  16. Feldman ML, Peters A (1979) A technique for estimating total spine numbers on Golgi-impregnated dendrites. J Comp Neurol 188(4):527–542CrossRefPubMedGoogle Scholar
  17. Garske AK, Lawyer CR, Peterson BM, Illig KR (2013) Adolescent changes in dopamine D1 receptor expression in orbitofrontal cortex and piriform cortex accompany associative learning deficit. PLoS ONE 8(2):e56191PubMedCentralCrossRefPubMedGoogle Scholar
  18. Georges PC, Hadzimichalis NM, Sweet ES, Firestein BL (2008) The yin-yang of dendrite morphology: unity of actin and microtubules. Mol Neurobiol 38(3):270–284CrossRefPubMedGoogle Scholar
  19. Gibb R, Kolb B (1998) A method for vibratome sectioning of Golgi–Cox stained whole rat brain. J Neurosci Methods 79(1):1–4CrossRefPubMedGoogle Scholar
  20. Gipson CD, Reissner KJ, Kupchik YM, Smith AC, Stankeviciute N, Hensley-Simon ME, Kalivas PW (2013) Reinstatement of nicotine seeking is mediated by glutamatergic plasticity. Proc Natl Acad Sci USA 110(22):9124–9129PubMedCentralCrossRefPubMedGoogle Scholar
  21. Glaser EM, Van der Loos H (1981) Analysis of thick brain sections by obverse-reverse computer microscopy: application of a new, high clarity Golgi–Nissl stain. J Neurosci Methods 4(2):117–125CrossRefPubMedGoogle Scholar
  22. Grueter BA, Robison AJ, Neve RL, Nestler EJ, Malenka RC (2013) ∆FosB differentially modulates nucleus accumbens direct and indirect pathway function. Proc Natl Acad Sci USA 110(5):1923–1928PubMedCentralCrossRefPubMedGoogle Scholar
  23. Gulley JM, Juraska JM (2013) The effects of abused drugs on adolescent development of corticolimbic circuitry and behavior. Neuroscience 249:3–20PubMedCentralCrossRefPubMedGoogle Scholar
  24. Halpain S, Hipolito A, Saffer L (1998) Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J Neurosci 18(23):9835–9844PubMedGoogle Scholar
  25. Hamilton DA, Kolb B (2005) Differential effects of nicotine and complex housing on subsequent experience-dependent structural plasticity in the nucleus accumbens. Behav Neurosci 119(2):355–365CrossRefPubMedGoogle Scholar
  26. Harris KM (1999) Structure, development, and plasticity of dendritic spines. Curr Opin Neurobiol 9(3):343–348CrossRefPubMedGoogle Scholar
  27. Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371CrossRefPubMedGoogle Scholar
  28. Hering H, Sheng M (2003) Activity-dependent redistribution and essential role of cortactin in dendritic spine morphogenesis. J Neurosci 23(37):11759–11769PubMedGoogle Scholar
  29. Hersch SM, Ciliax BJ, Gutekunst CA, Rees HD, Heilman CJ, Yung KK, Bolam JP, Ince E, Yi H, Levey AI (1995) Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J Neurosci 15(7 Pt 2):5222–5237PubMedGoogle Scholar
  30. Huppé-Gourgues F, O’donnell P (2012) D1-NMDA receptor interactions in the rat nucleus accumbens change during adolescence. Synapse 66(7):584–591CrossRefPubMedGoogle Scholar
  31. Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H (2003) Structure–stability–function relationships of dendritic spines. Trends Neurosci 26(7):360–368CrossRefPubMedGoogle Scholar
  32. Koleske AJ (2013) Molecular mechanisms of dendrite stability. Nat Rev Neurosci 14(8):536–550PubMedCentralCrossRefPubMedGoogle Scholar
  33. Koss WA, Belden CE, Hristov AD, Juraska JM (2014) Dendritic remodeling in the adolescent medial prefrontal cortex and basolateral amygdala of male and female rats. Synapse 68(2):61–72CrossRefPubMedGoogle Scholar
  34. Lachowicz JE, Sibley DR (1997) Molecular characteristics of mammalian dopamine receptors. Pharmacol Toxicol 81(3):105–113CrossRefPubMedGoogle Scholar
  35. Lee KW, Kim Y, Kim AM, Helmin K, Nairn AC, Greengard P (2006) Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc Natl Acad Sci USA 103(9):3399–3404PubMedCentralCrossRefPubMedGoogle Scholar
  36. Li J, Liu N, Lu K, Zhang L, Gu J, Guo F, An S, Zhang L, Zhang L (2012) Cocaine-induced dendritic remodeling occurs in both D1 and D2 dopamine receptor-expressing neurons in the nucleus accumbens. Neurosci Lett 517(2):118–122CrossRefPubMedGoogle Scholar
  37. Lobo MK, Nestler EJ (2011) The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat 5:41PubMedCentralPubMedGoogle Scholar
  38. Lobo MK, Zaman S, Damez-Werno DM, Koo JW, Bagot RC, DiNieri JA, Nugent A, Finkel E, Chaudhury D, Chandra R, Riberio E, Rabkin J, Mouzon E, Cachope R, Cheer JF, Han MH, Dietz DM, Self DW, Hurd YL, Vialou V, Nestler EJ (2013) ΔFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli. J Neurosci 33(47):18381–18395PubMedCentralCrossRefPubMedGoogle Scholar
  39. Lu XY, Ghasemzadeh MB, Kalivas PW (1998) Expression of D1 receptor, D2 receptor, substance P and enkephalin messenger RNAs in the neurons projecting from the nucleus accumbens. Neuroscience 82(3):767–780CrossRefPubMedGoogle Scholar
  40. Marttila K, Raattamaa H, Ahtee L (2006) Effects of chronic nicotine administration and its withdrawal on striatal FosB/DeltaFosB and c-Fos expression in rats and mice. Neuropharmacology 51(1):44–51CrossRefPubMedGoogle Scholar
  41. Maze I, Russo SJ (2010) Transcriptional mechanisms: underlying addiction-related structural plasticity. Mol Interv 10(4):219–230CrossRefPubMedGoogle Scholar
  42. McCarthy MJ, Duchemin AM, Neff NH, Hadjiconstantinou M (2012) CREB involvement in the regulation of striatal prodynorphin by nicotine. Psychopharmacology 221(1):143–153CrossRefPubMedGoogle Scholar
  43. McDonald CG, Dailey VK, Bergstrom HC, Wheeler TL, Eppolito AK, Smith LN, Smith RF (2005) Periadolescent nicotine administration produces enduring changes in dendritic morphology of medium spiny neurons from nucleus accumbens. Neurosci Lett 385(2):163–167CrossRefPubMedGoogle Scholar
  44. McDonald CG, Eppolito AK, Brielmaier JM, Smith LN, Bergstrom HC, Lawhead MR, Smith RF (2007) Evidence for elevated nicotine-induced structural plasticity in nucleus accumbens of adolescent rats. Brain Res 1151:211–218CrossRefPubMedGoogle Scholar
  45. National Institute on Drug Abuse (2012) Research report series: tobacco addiction. Department of Health and Human Services (US), Washington (NIH publication no. 12-4342)Google Scholar
  46. Nestler EJ (2001) Molecular neurobiology of addiction. Am J Addict 10(3):201–217CrossRefPubMedGoogle Scholar
  47. Nestler EJ (2004) Molecular mechanisms of drug addiction. Neuropharmacology 47(Suppl 1):24–32CrossRefPubMedGoogle Scholar
  48. Nestler EJ (2013) Cellular basis of memory for addiction. Dialogues Clin Neurosci 15(4):431–443PubMedCentralPubMedGoogle Scholar
  49. Newey SE, Velamoor V, Govek EE, Van Aelst L (2005) Rho GTPases, dendritic structure, and mental retardation. J Neurobiol 64(1):58–74CrossRefPubMedGoogle Scholar
  50. O’Dell LE (2009) A psychobiological framework of the substrates that mediate nicotine use during adolescence. Neuropharmacology 56(Suppl 1):263–278PubMedCentralCrossRefPubMedGoogle Scholar
  51. Odell WD (1990) Sexual maturation in the rat. In: Grumbach MM, Sizonenko PC, Aubert ML (eds) Control of the onset of puberty. Williams and Wilkins, Baltimore, pp 183–210Google Scholar
  52. Ojeda SR, Urbanski HF (1994) Puberty in the rat. In: Knobil E, Neill JD (eds) The physiology of reproduction, 2nd edn. Raven Press, New York, pp 363–409Google Scholar
  53. Passafaro M, Nakagawa T, Sala C, Sheng M (2003) Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature 424(6949):677–681CrossRefPubMedGoogle Scholar
  54. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press/Elsevier, Amsterdam/BostonGoogle Scholar
  55. Penzes P, Srivastava DP, Woolfrey KM (2009) Not just actin? A role for dynamic microtubules in dendritic spines. Neuron 61(1):3–5CrossRefPubMedGoogle Scholar
  56. Perna MK, Brown RW (2013) Adolescent nicotine sensitization and effects of nicotine on accumbal dopamine release in a rodent model of increased dopamine D2 receptor sensitivity. Behav Brain Res 242:102–109CrossRefPubMedGoogle Scholar
  57. Picciotto MR (2003) Nicotine as a modulator of behavior: beyond the inverted U. Trends Pharmacol Sci 24(9):493–499CrossRefPubMedGoogle Scholar
  58. Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM, Fuxe K, Changeux JM (1998) Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391(6663):173–177CrossRefPubMedGoogle Scholar
  59. Pierce RC, Kumaresan V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30(2):215–238CrossRefPubMedGoogle Scholar
  60. Pitchers KK, Vialou V, Nestler EJ, Laviolette SR, Lehman MN, Coolen LM (2013) Natural and drug rewards act on common neural plasticity mechanisms with ΔFosB as a key mediator. J Neurosci 33(8):3434–3442PubMedCentralCrossRefPubMedGoogle Scholar
  61. Redmond L, Kashani AH, Ghosh A (2002) Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34(6):999–1010CrossRefPubMedGoogle Scholar
  62. Reinoso BS, Undie AS, Levitt P (1996) Dopamine receptors mediate differential morphological effects on cerebral cortical neurons in vitro. J Neurosci Res 43(4):439–453CrossRefPubMedGoogle Scholar
  63. Ren Z, Sun WL, Jiao H, Zhang D, Kong H, Wang X, Xu M (2010) Dopamine D1 and N-methyl-d-aspartate receptors and extracellular signal-regulated kinase mediate neuronal morphological changes induced by repeated cocaine administration. Neuroscience 168(1):48–60PubMedCentralCrossRefPubMedGoogle Scholar
  64. Robinson TE, Kolb B (1999) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur J Neurosci 11(5):1598–1604CrossRefPubMedGoogle Scholar
  65. Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47 Suppl 1:33–46CrossRefPubMedGoogle Scholar
  66. Sánchez C, Díaz-Nido J, Avila J (2000) Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol 61(2):133–168CrossRefPubMedGoogle Scholar
  67. Schiltz CA, Kelley AE, Landry CF (2005) Contextual cues associated with nicotine administration increase arc mRNA expression in corticolimbic areas of the rat brain. Eur J Neurosci 21(6):1703–1711PubMedCentralCrossRefPubMedGoogle Scholar
  68. Schochet TL, Kelley AE, Landry CF (2005) Differential expression of arc mRNA and other plasticity-related genes induced by nicotine in adolescent rat forebrain. Neuroscience 135(1):285–297PubMedCentralCrossRefPubMedGoogle Scholar
  69. Schubert V, Dotti CG (2007) Transmitting on actin: synaptic control of dendritic architecture. J Cell Sci 120(Pt 2):205–212CrossRefPubMedGoogle Scholar
  70. Self DW (2004) Regulation of drug-taking and -seeking behaviors by neuroadaptations in the mesolimbic dopamine system. Neuropharmacology 47(Suppl 1):242–255CrossRefPubMedGoogle Scholar
  71. Shram MJ, Funk D, Li Z, Lê AD (2007) Acute nicotine enhances c-fos mRNA expression differentially in reward-related substrates of adolescent and adult rat brain. Neurosci Lett 418(3):286–291CrossRefPubMedGoogle Scholar
  72. Smith RF (2003) Animal models of periadolescent substance abuse. Neurotoxicol Teratol 25(3):291–301CrossRefPubMedGoogle Scholar
  73. Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86(2):353–387CrossRefPubMedGoogle Scholar
  74. Soderstrom K, Qin W, Williams H, Taylor DA, McMillen BA (2007) Nicotine increases FosB expression within a subset of reward- and memory-related brain regions during both peri- and post-adolescence. Psychopharmacology 191(4):891–897CrossRefPubMedGoogle Scholar
  75. Song ZM, Undie AS, Koh PO, Fang YY, Zhang L, Dracheva S, Sealfon SC, Lidow MS (2002) D1 dopamine receptor regulation of microtubule-associated protein-2 phosphorylation in developing cerebral cortical neurons. J Neurosci 22(14):6092–6105PubMedGoogle Scholar
  76. Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24(4):417–463CrossRefPubMedGoogle Scholar
  77. Spear LP, Brake SC (1983) Periadolescence: age-dependent behavior and psychopharmacological responsivity in rats. Dev Psychobiol 16(2):83–109CrossRefPubMedGoogle Scholar
  78. Spina L, Fenu S, Longoni R, Rivas E, Di Chiara G (2006) Nicotine-conditioned single-trial place preference: selective role of nucleus accumbens shell dopamine D1 receptors in acquisition. Psychopharmacology 184(3–4):447–455CrossRefPubMedGoogle Scholar
  79. Stepanyants A, Hof PR, Chklovskii DB (2002) Geometry and structural plasticity of synaptic connectivity. Neuron 34(2):275–288CrossRefPubMedGoogle Scholar
  80. Szebenyi G, Bollati F, Bisbal M, Sheridan S, Faas L, Wray R, Haferkamp S, Nguyen S, Caceres A, Brady ST (2005) Activity-driven dendritic remodeling requires microtubule-associated protein 1A. Curr Biol 15(20):1820–1826CrossRefPubMedGoogle Scholar
  81. Tada T, Sheng M (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16(1):95–101CrossRefPubMedGoogle Scholar
  82. Tarazi FI, Baldessarini RJ (2000) Comparative postnatal development of dopamine D(1), D(2) and D(4) receptors in rat forebrain. Int J Dev Neurosci 18(1):29–37CrossRefPubMedGoogle Scholar
  83. Ultanir SK, Kim JE, Hall BJ, Deerinck T, Ellisman M, Ghosh A (2007) Regulation of spine morphology and spine density by NMDA receptor signaling in vivo. Proc Natl Acad Sci USA 104(49):19553–19558PubMedCentralCrossRefPubMedGoogle Scholar
  84. Urbanska M, Blazejczyk M, Jaworski J (2008) Molecular basis of dendritic arborization. Acta Neurobiol Exp (Wars) 68(2):264–288Google Scholar
  85. Urbanska M, Swiech L, Jaworski J (2012) Developmental plasticity of the dendritic compartment: focus on the cytoskeleton. Adv Exp Med Biol 970:265–284CrossRefPubMedGoogle Scholar
  86. Valjent E, Pascoli V, Svenningsson P, Paul S, Enslen H, Corvol JC, Stipanovich A, Caboche J, Lombroso PJ, Nairn AC, Greengard P, Hervé D, Girault JA (2005) Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc Natl Acad Sci USA 102(2):491–496PubMedCentralCrossRefPubMedGoogle Scholar
  87. Wahlstrom D, White T, Luciana M (2010) Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neurosci Biobehav Rev 34(5):631–648PubMedCentralCrossRefPubMedGoogle Scholar
  88. Wayman GA, Impey S, Marks D, Saneyoshi T, Grant WF, Derkach V, Soderling TR (2006) Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 50(6):897–909CrossRefPubMedGoogle Scholar
  89. Yuste R (2011) Dendritic spines and distributed circuits. Neuron 71(5):772–781PubMedCentralCrossRefPubMedGoogle Scholar
  90. Zarrindast MR, Sadegh M, Shafaghi B (1996) Effects of nicotine on memory retrieval in mice. Eur J Pharmacol 295(1):1–6CrossRefPubMedGoogle Scholar
  91. Zhou FM, Liang Y, Dani JA (2001) Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 4(12):1224–1229CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • D. G. Ehlinger
    • 1
    Email author
  • H. C. Bergstrom
    • 2
  • J. C. Burke
    • 1
  • G. M. Fernandez
    • 1
  • C. G. McDonald
    • 1
  • R. F. Smith
    • 1
  1. 1.Department of PsychologyGeorge Mason UniversityFairfaxUSA
  2. 2.Laboratory of Behavioral and Genomic NeuroscienceNational Institute on Alcohol Abuse and Alcoholism, NIHRockvilleUSA

Personalised recommendations