Advertisement

Brain Structure and Function

, Volume 221, Issue 1, pp 39–58 | Cite as

Transcriptomic-anatomic analysis of the mouse habenula uncovers a high molecular heterogeneity among neurons in the lateral complex, while gene expression in the medial complex largely obeys subnuclear boundaries

  • Franziska Wagner
  • Leon French
  • Rüdiger W. Veh
Original Article

Abstract

The mammalian habenula with its medial and lateral complexes has gained much interest in recent years, while knowledge on the detailed biological functions of these nuclei is still scarce. Novel strategies to differentiate and identify habenular cell types are required. Such attempts have largely failed, most likely due to the lack of appropriate molecular markers. One important tool to approach this dilemma is available in form of the Allen Brain Atlas (ABA), which provides detailed expression patterns of many genes in the mouse brain. In the present report, ABA tools in combination with visual inspection of ISH images were used to detect transcripts, which are strongly expressed in medial (MHb) and lateral (LHb) habenular complexes. Against our expectations, most transcripts were differentially distributed throughout the LHb, disregarding boundaries of subnuclear areas. Nine distinct distribution patterns were recognized. Yet, several transcripts could not be attributed to one of these, suggesting a high diversity of neuron types in the LHb. In the MHb, in contrast, many transcripts tended to obey subnuclear boundaries. The differential distribution of others like Adcyap1, Chrna3, or Trp53i11 suggests the presence of a novel subfield adjacent to the region of the MHbVm, which now is termed intermediate field of the ventral MHb. In addition, the localizations of Amigo2, Adcyap1, and a couple of other transcripts suggest a lateral extension of the MHb, which is here, termed HbX area. Apparently, this area is composed of intermingled MHb and LHb neurons and may allow functional interaction between the both habenular complexes.

Keywords

Lateral habenular complex (LHb) Medial habenular complex (MHb) Monaminergic systems Non-reward system Neuron types Marker proteins Autism 

Supplementary material

429_2014_891_MOESM1_ESM.xls (409 kb)
Table 1 (Supplement): Complete list of the 138 transcripts, which were analyzed with respect to their detailed distributions within the LHb. Captation figures schematically display the corresponding patterns. Areas with high cell densities are shown in dark blue, those with low densities in light blue, and the HBX field in yellow (XLS 409 kb)
429_2014_891_MOESM2_ESM.xls (391 kb)
Table 2 (Supplement): Complete list of genes with characteristic expressions in the MHb. Captation figures schematically display the corresponding localizations. Selected subnuclei are shown in dark blue, others in light blue, the border zone in orange, and the HBX field in yellow (XLS 391 kb)

References

  1. Aizawa H, Kobayashi M, Tanaka SC, Fukai T, Okamoto H (2012) Molecular characterization of the subnuclei in rat habenula. J Comp Neurol 520:4051–4066CrossRefPubMedGoogle Scholar
  2. Allen Institute for Brain Science (2012) Technical white paper: In situ hybridization data production. Mouse Brain Atlas. http://help.brain.map.org/download/attachments/2818169/ABADataProductionProcessespdf?version=1&modificationDate=1319477154403. 2:1–22
  3. Allen Institute for Brain Science (2014) Mouse Brain Atlas. http://mouse.brain-map.org
  4. Amo R, Aizawa H, Takahoko M, Kobayashi M, Takahashi R, Aoki T, Okamoto H (2010) Identification of the zebrafish ventral habenula as a homolog of the mammalian lateral habenula. J Neurosci 30:1566–1574CrossRefPubMedGoogle Scholar
  5. Andres KH, von Düring M, Veh RW (1999) Subnuclear organization of the rat habenular complexes. J Comp Neurol 407:130–150CrossRefPubMedGoogle Scholar
  6. Basu SN, Kollu R, Banerjee-Basu S (2009) AutDB: a gene reference resource for autism research. Nucleic Acids Res. 37 (Database issue):D832-836. http://autism.mindspec.org/autdb (25.07.2014)
  7. Berthold M, Collin M, Sejlitz T, Meister B, Lind P (2003) Cloning of a novel orphan G protein-coupled receptor (GPCR-2037): in situ hybridization reveals high mRNA expression in rat brain restricted to neurons of the habenular complex. Mol Brain Res 120:22–29CrossRefPubMedGoogle Scholar
  8. Betancur C (2011) Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res 1380:42–77CrossRefPubMedGoogle Scholar
  9. Brinschwitz K, Dittgen A, Madai VI, Lommel R, Geisler S, Veh RW (2010) Glutamatergic axons from the lateral habenula mainly terminate on GABAergic neurons of the ventral midbrain. Neuroscience 168:463–476CrossRefPubMedGoogle Scholar
  10. Broms JC, Tingström A (2013) Immunohistochemical characterization of GPR151, an orphan receptor specifically expressed in habenula neurons 3403 2013 Neuroscience Meeting Planner San Diego, CA, Society for Neuroscience (2013 Online)Google Scholar
  11. Chastrette N, Pfaff DW, Gibbs RB (1991) Effects of daytime and nighttime stress on Fos-like immunoreactivity in the paraventricular nucleus of the hypothalamus, the habenula, and the posterior paraventricular nucleus of the thalamus. Brain Res 563:339–344CrossRefPubMedGoogle Scholar
  12. Christoph GR, Leonzio RJ, Wilcox KS (1986) Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmentum area of the rat. J Neurosci 6:613–619PubMedGoogle Scholar
  13. Cook EH, Leventhal BL (1996) The serotonin system in autism. Curr Opin Pediatr 8:348–354CrossRefPubMedGoogle Scholar
  14. De Biasi M, Dani JA (2011) Reward, Addiction, Withdrawal to Nicotine. Annu Rev Neurosci 34:105–130PubMedCentralCrossRefPubMedGoogle Scholar
  15. De Jong TR, Measor KT, Chauke M, Harris BN, Saltzman W (2010) Brief pup exposure induces Fos-expession in the lateral habenula and serotonergic caudal dorsal raphe nucleus of paternally experienced male california mice (peromyscus californicus). Neurosci 169:1094–1104CrossRefGoogle Scholar
  16. Eden E, Lipson D, Yogev S, Yakhini Z (2007) Discovering Motifs in Ranked Lists of DNA sequences. PLoS Comput Biol 3(3):e39PubMedCentralCrossRefPubMedGoogle Scholar
  17. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10:48PubMedCentralCrossRefPubMedGoogle Scholar
  18. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets neurotechnique in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51CrossRefPubMedGoogle Scholar
  19. Geisler S, Zahm DS (2005) Afferents of the ventral tegmental area in the rat—anatomical substratum for integrative functions. J Comp Neurol 490:270–294CrossRefPubMedGoogle Scholar
  20. Geisler S, Andres KH, Veh RW (2003) Morphologic and cytochemical criteria for the identification and delineation of individual subnuclei within the lateral habenular complex of the rat. J Comp Neurol 458:78–97CrossRefPubMedGoogle Scholar
  21. Geisler S, Derst C, Veh RW, Zahm DS (2007) Glutamatergic afferents of the ventral tegmental area in the rat. J Neurosci 27:5730–5743PubMedCentralCrossRefPubMedGoogle Scholar
  22. Goncalves L, Sego C, Metzger M (2012) Differential projections from the lateral habenula to the rostromedial tegmental nucleus and ventral tegmental area in the rat. J Comp Neurol 520:1278–1300CrossRefPubMedGoogle Scholar
  23. Görlich A, Antolin-Fontes B, Ables JL, Frahm S, Slimak MA, Dougherty JD, Ibanez-Tallon I (2013) Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons. Proc Natl Acad Sci USA 110:17077–17082PubMedCentralCrossRefPubMedGoogle Scholar
  24. Herkenham M, Nauta WJH (1977) Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. J Comp Neurol 173:123–146CrossRefPubMedGoogle Scholar
  25. Ignatov A, Hermans-Borgmeyer I, Schaller HC (2004) Cloning and characterization of a novel G-protein-coupled receptor with homology to galanin receptors. Neuropharmacol 46:1114–1120CrossRefGoogle Scholar
  26. Jhou T, Geisler S, Marinelli M, Degarmo BA, Zahm DS (2009) The mesopontine rostromedial tegmental nucleus: a structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and Substantia Nigra Compacta. J Comp Neurol 513:566–596PubMedCentralCrossRefPubMedGoogle Scholar
  27. Ji H, Shepard PD (2007) Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA-A receptor-mediated mechanism. J Neurosci 27:6923–6930CrossRefPubMedGoogle Scholar
  28. Kasukawa Masumoto K-H, Nikaido I, Nagano M, Uno KD, Tsujino K, Hanashima C, Shigeyoshi Y, Ueda HR (2011) Quantitative expression profile of distinct functional regions in the adult mouse brain. Plos One. doi: 10.1371/journal.pone.0023228 PubMedCentralPubMedGoogle Scholar
  29. Kaufling J, Veinante P, Pawlowski SA, Freund-Mercier M-J, Barrot M (2010) Gamma-aminobutyric acid cells with cocaine-induced delte-FosB in the ventral tegmental area innervate mesolimbic neurons. Biol Psychiatry 67:88–92CrossRefPubMedGoogle Scholar
  30. Kobayashi Y, Sano Y, Vannoni E, Goto H, Suzuki H, Oba A, Kawasaki H, Kanba S, Lipp H-P, Murphy NP, Wolfer DP, Itohara S (2013) Genetic dissection of medial habenula –interpeduncular nucleus pathway function in mice. Front Behav Neursci 7:1–20Google Scholar
  31. Kowski AB, Veh RW, Weiss T (2009) Dopaminergic activation excites rat lateral habenular neurons in vivo. Neurosci 161:1154–1165CrossRefGoogle Scholar
  32. Lammel S, Ion DI, Roeper J, Malenka RC (2011) Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 70:855–862PubMedCentralCrossRefPubMedGoogle Scholar
  33. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176CrossRefPubMedGoogle Scholar
  34. Li B, Piriz J, Mirrione M, Chung C-H, Proulx CD, Schulz D, Henn F, Malinow R (2011) Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470:535–539PubMedCentralCrossRefPubMedGoogle Scholar
  35. Li X, Zou H, Brown WT (2012) Transcripts associated with autism spectrum disorder. Brain Res Bull 88:543–552CrossRefPubMedGoogle Scholar
  36. Maroteaux M, Mameli M (2012) Cocaine evokes projection-specific synaptic plasticity of lateral habenula neurons. J Neurosci 32:12641–12646CrossRefPubMedGoogle Scholar
  37. Matsumoto M, Hikosaka O (2007) Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447:1111–1115CrossRefPubMedGoogle Scholar
  38. Matsuo A, Matsumoto S-I, Nagano M, Masumoto K-H, Takasaki J, Matsumoto M, Kobori M, Katoh M, Shigeyoshi Y (2005) Molecular cloning and characterization of a novel Gq-coupled orphan receptor GPRg1 exclusively expressed in the central nervous system. Biochem Biophys Res Commun 331:363–369CrossRefPubMedGoogle Scholar
  39. Ng L, Pathak S, Kuan L, Lau C, Dong HW, Sodt A, Dang C, Avants B, Yushkevich P, Gee J, Haynor D, Lein E, Jones A, Hawrylycz M (2007) Genomic scale neuroinformatics for 3-D gene expression mapping in the mouse brain. IEEE/ACM Trans Comp Biol Bioinform 4(3):382–393CrossRefGoogle Scholar
  40. Ng L, Bernard A, Lau C, Overly CC, Dong H-W, Kuan C, Pathak S, Sunkin SM, Dang C, Bohland JW, Bokil H, Mitra PP, Puelles L, Hohmann J, Anderson DJ, Lein ES, Jones AR, Hawrylycz M (2009) An anatomic gene expression atlas of the adult mouse brain. Nat Neurosci 12:356–362CrossRefPubMedGoogle Scholar
  41. Notomi T, Shigemoto R (2004) Immunohistochemical localization of I-h channel subunits, HCN1-4, in the rat brain. J Comp Neurol 471:241–276CrossRefPubMedGoogle Scholar
  42. Omelchenko N, Bell R, Sesack SR (2009) Lateral habenula projections to dopamine and GABA neurons in the rat ventral tegmental area. Eur J Neurosci 30:1239–1250PubMedCentralCrossRefPubMedGoogle Scholar
  43. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San DiegoGoogle Scholar
  44. Poller WC, Bernard R, Derst C, Weiss T, Madai VI, Veh RW (2011) Lateral habenular neurons projecting to reward-processing nonoaminergic nuclei express hyperpolarization activated cyclic nucleotide-gated cation channels. Neurosci 193:205–216CrossRefGoogle Scholar
  45. Quina LA, Wang S, Ng L, Turner EE (2009) Brn3a and Nurr1 mediate a gene regulatory pathway for habenula development. J Neurosci 29:14309–14322PubMedCentralCrossRefPubMedGoogle Scholar
  46. Roeper J (2013) Dissecting the diversity of midbrain dopamine neurons. Trends Neurosci 36:336–342CrossRefPubMedGoogle Scholar
  47. Sandyk R (1992) Pineal and habenula calcification in schizophrenia. Int J Neurosci 67:19–30CrossRefPubMedGoogle Scholar
  48. Sartorius A, Kiening KL, Kirsch P, von Gall CC, Haberkorn U, Unterberg AW, Henn FA, Meyer-Lindenberg A (2010) Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol Psychiatry 67:e9–e11CrossRefPubMedGoogle Scholar
  49. Schain RJ, Freedman DX (1961) Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. J Pediatr 58:315–320CrossRefPubMedGoogle Scholar
  50. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27PubMedGoogle Scholar
  51. Scott MM, Wylie CJ, Lerch JK, Murphy R, Lobur K, Herlitze S, Jiang W, Conlon RA, Strowbridge BW, Deneris ES (2005) A genetic approach to access serotonin neurons for in vivo and in vitro studies. Proc Natl Acad Sci USA 102:16472–16477PubMedCentralCrossRefPubMedGoogle Scholar
  52. Shepard PD, Holcomb HH, Gold JM (2006) The presence of absence: Habenular regulation of dopamine neurons and the encoding of negative outcomes. Schizophrenia Bull 32:417–421CrossRefGoogle Scholar
  53. Shinoda K, Tohyama M (1987) Analysis of the habenulopetal enkephalinergic system in the rat brain: an immunohistochemical study. J Comp Neurol 255:483–496CrossRefPubMedGoogle Scholar
  54. Sugino K, Hempel CM, Miller MN, Hattox AM, Shapiro P, Wu CZ, Huang ZJ, Nelson SB (2006) Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci 9:99–107CrossRefPubMedGoogle Scholar
  55. Sunkin SM, Ng L, Lau C, Dolbeare T, Gilbert TL, Thompson CL, Hawrylycz M, Dang C (2013) Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res 41:D996–D1008PubMedCentralCrossRefPubMedGoogle Scholar
  56. Sutton S, Lee G, Kuei C, Nepomuceno D, Liu C, Bonventure P, Lovenberg T (2013) GPR139 mRNA is expressed in the habenular system of the rat and mouse 3405, Neuroscience Meeting Planner San Diego, CA, Society for Neuroscience, (2013 Online)Google Scholar
  57. van Kerkhof LW, Damsteegt R, Trezza V, Voorn P, Vanderschuren LJMJ (2013) Functional integrity of the habenula is necessary for social play behaviour in rats. Eur J Neurosci 38:3465–3475CrossRefPubMedGoogle Scholar
  58. Visscher PM, Brown MA, McCarthy MI, Jang J (2012) Five years of GWAS discovery. Amer J Hum Genetics 90:7–24CrossRefGoogle Scholar
  59. Wagner F, Stroh T, Veh RW (2014) Correlating habenular subnuclei in rat and mouse by using topographic, morphological, and cytochemical criteria. J Comp Neurol 522:2650–2662CrossRefPubMedGoogle Scholar
  60. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, and Parkinson H (2014) The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Research 42:D1001-D1006. http://www.genome.gov/page.cfm?pageid=26525384#searchForm
  61. Wirtshafter D, Asin KE, Pitzer MR (1994) Dopamine Agonists and Stress Produce Different Patterns of Fos-Like Immunoreactivity in the Lateral Habenula. Brain Res 633:21–26CrossRefPubMedGoogle Scholar
  62. Wise R (2004) Dopamine, learning and motivation. Nature Rev 5:1–12CrossRefGoogle Scholar
  63. Xu LM, Li JR, Huang Y, Zhao M, Tang X and Wei L (2012) AutismKB: an evidence-based knowledgebase of autism genetics. Nucleic Acids Res 40: D1016-1022. http://autismkb.cbi.pku.edu.cn/ (25.07.2014; syndromic, non-syndromic and core dataset)
  64. Zhang R, Oorschot DE (2006) Total number of neurons in the habenular nuclei of the rat epithalamus: a stereological study. J Anat 208:577–585PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Franziska Wagner
    • 1
  • Leon French
    • 2
  • Rüdiger W. Veh
    • 1
  1. 1.Institut für Zell- und NeurobiologieCentrum 2, Charité-Universitätsmedizin BerlinBerlinGermany
  2. 2.Rotman Research InstituteUniversity of TorontoTorontoCanada

Personalised recommendations