Skip to main content
Log in

Maturation of preterm newborn brains: a fMRI–DTI study of auditory processing of linguistic stimuli and white matter development

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

To evaluate brain development longitudinally in premature infants without abnormalities as compared to healthy full-term newborns, we assessed fMRI brain activity patterns in response to linguistic stimuli and white matter structural development focusing on language-related fibres. A total sample of 29 preterm newborns and 26 at term control newborns underwent both fMRI and DTI. Griffiths test was performed at 6 months of corrected age to assess development. Auditory fMRI data were analysed in 17 preterm newborns at three time points [34, 41 and 44 weeks of post menstrual age (wPMA)] and in 15 controls, at term. Analysis showed a distinctive pattern of cortical activation in preterm newborns up to 29 wPMA moving from early prevalent left temporal and supramarginal area activation in the preterm period, to a bilateral temporal and frontoopercular activation in the at term equivalent period and to a more fine-grained left pattern of activity at 44 wPMA. At term controls showed instead greater bilateral posterior thalamic activation. The different pattern of brain activity associated to preterm newborns mirrors their white matter maturation delay in peripheral regions of the fibres and thalamo-cortical radiations in subcortical areas of both hemispheres, pointing to different transient thalamo-cortical development due to prematurity. Evidence for functional thalamic activation and more mature subcortical tracts, including thalamic radiations, may represent the substantial gap between preterm and at term infants. The transition between bilateral temporal activations at term age and leftward activations at 44 weeks of PMA is correlated to better neuropsychological results in Griffiths test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altman NR, Bernal B (2001) Brain activation in sedated children: auditory and visual functional MR imaging. Radiology 221(1):56–63

    Article  CAS  PubMed  Google Scholar 

  • Anderson AW, Marois R, Colson ER, Peterson BS, Duncan CC, Ehrenkranz RA, Schneider KC, Gore JC, Ment LR (2001) Neonatal auditory activation detected by functional magnetic resonance imaging. Magn Reson Imaging 19(1):1–5

    Article  PubMed  Google Scholar 

  • Arichi T, Moraux A, Melendez A, Doria V, Groppo M, Merchant N, Combs S, Burdet E, Larkman DJ, Counsell SJ, Beckmann CF, Edwards AD (2010) Somatosensory cortical activation identified by functional MRI in preterm and term infants. Neuroimage 49(3):2063–2071

    Article  CAS  PubMed  Google Scholar 

  • Arichi T, Fagiolo G, Varela M, Melendez-Calderon A, Allievi A, Merchant N, Tusor N, Counsell SJ, Burdet E, Beckmann CF, Edwards AD (2012) Development of BOLD signal hemodynamic responses in the human brain. Neuroimage 63(2):663–673

    Article  PubMed Central  PubMed  Google Scholar 

  • Aylward GP (2002) Cognitive and neuropsychological outcomes: more than IQ scores. Ment Retard Dev Disabil Res Rev 8(4):234–240

    Article  PubMed  Google Scholar 

  • Ball G, Srinivasan L, Aljabar P, Counsell SJ, Durighel G, Hajnal JV, Rutherford MA, Edwards AD (2013) Development of cortical microstructure in the preterm human brain. Proc Natl Acad Sci USA 110(23):9541–9546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barre N, Morgan A, Doyle LW, Anderson PJ (2011) Language abilities in children who were very preterm and/or very low birth weight: a meta-analysis. J Pediatr 158(5):766–774

    Article  PubMed  Google Scholar 

  • Bhutta AT, Cleves MA, Casey PH, Cradock MM, Anand KJ (2002) Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA 288:728–737

    Article  PubMed  Google Scholar 

  • Brauer J, Neumann J, Friederici AD (2008) Temporal dynamics of perisylvian activation during language processing in children and adults. Neuroimage 41(4):1484–1492

    Article  PubMed Central  PubMed  Google Scholar 

  • Brauer J, Anwander A, Friederici AD (2011) Neuroanatomical prerequisites for language functions in the maturing brain. Cereb Cortex 21(2):459–466

    Article  PubMed  Google Scholar 

  • Caravale B, Tozzi C, Albino G, Vicari S (2005) Cognitive development in low risk preterm infants at 3–4 years of life. Arch Dis Child Fetal Neonatal Ed 90(6):F474–F479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132

    Article  PubMed  Google Scholar 

  • Challis JR, Lye SJ, Gibb W, Whittle W, Patel F, Alfaidy N (2001) Understanding preterm labor. Ann NY Acad Sci 943:225–234

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary T, Walch E, Herold B, Metze B, Lejeune A, Burkhardt F, Buhrer C (2013) Predictive and concurrent validity of standardized neurodevelopmental examinations by the Griffiths scales and Bayley scales of infant development II. Klin Padiatr 225(1):8–12

    CAS  PubMed  Google Scholar 

  • Chi JG, Dooling EC, Gilles FH (1977) Gyral development of the human brain. Ann Neurol 1(1):86–93

    Article  CAS  PubMed  Google Scholar 

  • Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22(4):487–497

    Article  CAS  PubMed  Google Scholar 

  • Dall’oglio AM, Rossiello B, Coletti MF, Bultrini M, De Marchis C, Rava L, Caselli C, Paris S, Cuttini M (2010) Do healthy preterm children need neuropsychological follow-up? Preschool outcomes compared with term peers. Dev Med Child Neurol 52(10):955–961

    Article  PubMed  Google Scholar 

  • Dehaene-Lambertz G (2000) Cerebral specialization for speech and non-speech stimuli in infants. J Cogn Neurosci 12(3):449–460

    Article  CAS  PubMed  Google Scholar 

  • Dehaene-Lambertz G, Dehaene S, Hertz-Pannier L (2002) Functional neuroimaging of speech perception in infants. Science 298(5600):2013–2015

    Article  CAS  PubMed  Google Scholar 

  • Dehaene-Lambertz G, Pallier C, Serniclaes W, Sprenger-Charolles L, Jobert A, Dehaene S (2005) Neural correlates of switching from auditory to speech perception. Neuroimage 24(1):21–33

    Article  PubMed  Google Scholar 

  • Dehaene-Lambertz G, Hertz-Pannier L, Dubois J (2006) Nature and nurture in language acquisition: anatomical and functional brain-imaging studies in infants. Trends Neurosci 29(7):367–373

    Article  CAS  PubMed  Google Scholar 

  • Draper ES, Manktelow B, Field DJ, James D (1999) Prediction of survival for preterm births by weight and gestational age: retrospective population based study. BMJ 319(7217):1093–1097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fransson P, Skiöld B, Horsch S, Nordell A, Blennow M, Lagercrantz H, Aden U (2007) Resting-state networks in the infant brain. Proc Natl Acad Sci USA 104(39):15531–15536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fransson P, Skiöld B, Engström M, Hallberg B, Mosskin M, Aden U, Lagercrantz H, Blennow M (2009) Spontaneous brain activity in the newborn brain during natural sleep—an fMRI study in infants born at full term. Pediatr Res 66(3):301–305

    Article  PubMed  Google Scholar 

  • Fransson P, Aden U, Blennow M, Lagercrantz H (2011) The functional architecture of the infant brain as revealed by resting-state fMRI. Cereb Cortex 21(1):145–154

    Article  PubMed  Google Scholar 

  • Friederici AD, Brauer J, Lohmann G (2011) Maturation of the language network: from inter- to intrahemispheric connectivities. PLoS ONE 6(6):e20726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, Penny WD (2011) Statistical parametric mapping: the analysis of functional brain images. Academic Press, London

    Google Scholar 

  • Gaillard WD, Grandin CB, Xu B (2001) Developmental aspects of pediatric fMRI: considerations for image acquisition, analysis, and interpretation. Neuroimage 13(2):239–249

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Shatz CJ (1994) Segregation of geniculocortical afferents during the critical period: a role for subplate neurons. J Neurosci 14(6):3862–3880

    CAS  PubMed  Google Scholar 

  • Graziani LJ, Katz L, Cracco Q, Cracco JB, Weitzman ED (1974) The maturation and interrelationship of EEF patterns and auditory evoked response in premature infants. Electroencephalogr Clin Neurophysiol 36(4):367–375

    Article  CAS  PubMed  Google Scholar 

  • Grimmer I, Metze BC, Walch E, Scholz T, Buhrer C (2010) Predicting neurodevelopmental impairment in preterm infants by standardized neurological assessments at 6 and 12 months corrected age. Acta Paediatr 99(4):526–530

    Article  CAS  PubMed  Google Scholar 

  • Hack M, Flannery DJ, Schluchter M, Cartar L, Borawski E, Klein N (2002) Outcomes in young adulthood for very-low-birth-weight infants. N Engl J Med 346(3):149–157

    Article  PubMed  Google Scholar 

  • Hermoye L, Saint-Martin C, Cosnard G, Lee SK, Kim J, Nassogne MC, Menten R, Clapuyt P, Donohue PK, Hua K, Wakana S, Jiang H, van Zijl PC, Mori S (2006) Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. Neuroimage 29(2):493–504

    Article  PubMed  Google Scholar 

  • Holland SK, Vannest J, Mecoli M, Jacola LM, Tillema JM, Karunanayaka PR, Schmithorst VJ, Yuan W, Plante E, Byars AW (2007) Functional MRI of language lateralization during development in children. Int J Audiol 46(9):533–551

    Article  PubMed Central  PubMed  Google Scholar 

  • Hope PL, Gould SJ, Howard S, Hamilton PA, Costello AM, Reynolds EO (1988) Precision of ultrasound diagnosis of pathologically verified lesions in the brains of very preterm infants. Dev Med Child Neurol 30(4):457–471

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Xue R, Zhang J, Ren T, Richards LJ, Yarowsky P, Miller MI, Mori S (2009) Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci 29(13):4263–4273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huntley M (1996) The Griffiths Mental Development Scales—Revised: birth to 2 years. Hogrefe, Oxford

  • Huppi PS, Dubois J (2006) Diffusion tensor imaging of brain development. Semin Fetal Neonatal Med 11(6):489–497

    Article  PubMed  Google Scholar 

  • Huppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolesz FA, Volpe JJ (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44(4):584–590

    Article  CAS  PubMed  Google Scholar 

  • Huppi PS, Murphy B, Maier SE, Zientara GP, Inder TE, Barnes PD, Kikinis R, Jolesz FA, Volpe JJ (2001) Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging. Pediatrics 107(3):455–460

    Article  CAS  PubMed  Google Scholar 

  • Jardri R, Pins D, Houfflin-Debarge V, Chaffiotte C, Rocourt N, Pruvo JP, Steinling M, Delion P, Thomas P (2008) Fetal cortical activation to sound at 33 weeks of gestation: a functional MRI study. Neuroimage 42(1):10–18

    Article  PubMed  Google Scholar 

  • Judas M, Sedmak G, Kostovic I (2013) The significance of the subplate for evolution and developmental plasticity of the human brain. Front Hum Neurosci 7:423. doi:10.3389/fnhum.2013.00423

    Article  PubMed Central  PubMed  Google Scholar 

  • Kasprian G, Langs G, Brugger PC, Bittner M, Weber M, Arantes M, Prayer D (2011) The prenatal origin of hemispheric asymmetry: an in utero neuroimaging study. Cereb Cortex 21(5):1076–1083

    Article  PubMed  Google Scholar 

  • Koay CG, Chang LC, Carew JD, Pierpaoli C, Basser PJ (2006) A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging. J Magn Reson 182(1):115–125

    Article  CAS  PubMed  Google Scholar 

  • Kostovic I, Jovanov-Milosevic N (2006) The development of cerebral connections during the first 20–45 weeks’ gestation. Semin Fetal Neonatal Med 11(6):415–422

    Article  PubMed  Google Scholar 

  • Kostovic I, Judas M (2010) The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatr 99(8):1119–1127

    Article  PubMed  Google Scholar 

  • Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297(3):441–470

    Article  CAS  PubMed  Google Scholar 

  • Kozberg MG, Chen BR, DeLeo SE, Bouchard MB, Hillman EM (2013) Resolving the transition from negative to positive blood oxygen level-dependent responses in the developing brain. Proc Natl Acad Sci USA 110(11):4380–4385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuban KC, Leviton A (1994) Cerebral palsy. N Engl J Med 330(3):188–195

    Article  CAS  PubMed  Google Scholar 

  • Kuklisova-Murgasova M, Aljabar P, Srinivasan L, Counsell SJ, Doria V, Serag A, Gousias IS, Boardman JP, Rutherford MA, Edwards AD, Hajnal JV, Rueckert D (2011) A dynamic 4D probabilistic atlas of the developing brain. Neuroimage 54(4):2750–2763

    Article  PubMed  Google Scholar 

  • Lawrence EJ, McGuire PK, Allin M, Walshe M, Giampietro V, Murray RM, Rifkin L, Nosarti C (2010) The very preterm brain in young adulthood: the neural correlates of verbal paired associate learning. J Pediatr 156:889–895

    Article  PubMed  Google Scholar 

  • Liu Y, Baleriaux D, Kavec M, Metens T, Absil J, Denolin V, Pardou A, Avni F, Van Bogaert P, Aeby A (2010) Structural asymmetries in motor and language networks in a population of healthy preterm neonates at term equivalent age: a diffusion tensor imaging and probabilistic tractography study. Neuroimage 51(2):783–788

    Article  PubMed  Google Scholar 

  • Mahmoudzadeh M, Dehaene-Lambertz G, Fournier M, Kongolo G, Goudjil S, Dubois J, Grebe R, Wallois F (2013) Syllabic discrimination in premature human infants prior to complete formation of cortical layers. Proc Natl Acad Sci USA 110(12):4846–4851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marlow N (2004) Neurocognitive outcome after very preterm birth. Arch Dis Child Fetal Neonatal Ed 89(3):F224–F228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ment LR, Vohr B, Allan W, Katz KH, Schneider KC, Westerveld M, Duncan CC, Makuch RW (2003) Change in cognitive function over time in very low-birth-weight infants. JAMA 289(6):705–711

    Article  PubMed  Google Scholar 

  • Miller SP, Vigneron DB, Henry RG, Bohland MA, Ceppi-Cozzio C, Hoffman C, Newton N, Partridge JC, Ferriero DM, Barkovich AJ (2002) Serial quantitative diffusion tensor MRI of the premature brain: development in newborns with and without injury. J Magn Reson Imaging 16(6):621–632

    Article  PubMed  Google Scholar 

  • Miller JH, McKinstry RC, Philip JV, Mukherjee P, Neil JJ (2003) Diffusion-tensor MR imaging of normal brain maturation: a guide to structural development and myelination. AJR Am J Roentgenol 180(3):851–859

    Article  PubMed  Google Scholar 

  • Mohammadi S, Moller HE, Kugel H, Muller DK, Deppe M (2010) Correcting eddy current and motion effects by affine whole-brain registrations: evaluation of three-dimensional distortions and comparison with slicewise correction. Magn Reson Med 64:1047–1056

    Article  PubMed  Google Scholar 

  • Mohammadi S, Keller SS, Glauche V, Kugel H, Jansen A, Hutton C, Flšel A, Deppe M (2012) The influence of spatial registration on detection of cerebral asymmetries using voxel-based statistics of fractional anisotropy images and TBSS. PLoS ONE 7(6):e3685

    Article  Google Scholar 

  • Molliver ME, Kostovic I, Van der Loos H (1973) The development of synapses in cerebral cortex of the human foetus. Brain Res 50:403–407

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Kochiyama T, Yamada H, Konishi Y, Yonekura Y, Matsumura M, Sadato N (2000) Difference in the metabolic response to photic stimulation of the lateral geniculate nucleus and the primary visual cortex of infants: a fMRI study. Neurosci Res 38(1):63–70

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Miller JH, Shimony JS, Conturo TE, Lee BC, Almli CR, McKinstry RC (2001) Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology 221(2):349–358

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Miller JH, Shimony JS, Philip JV, Nehra D, Snyder AZ, Conturo TE, Neil JJ, McKinstry RC (2002) Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am J Neuroradiol 23(9):1445–1456

    PubMed  Google Scholar 

  • Myers EH, Hampson M, Vohr B, Lacadie C, Frost SJ, Pugh KR, Katz KH, Schneider KC, Makuch RW, Constable RT, Ment LR (2010) Functional connectivity to a right hemisphere language center in prematurely born adolescents. Neuroimage 51(4):1445–1452

    Article  PubMed Central  PubMed  Google Scholar 

  • Narberhaus A, Lawrence E, Allin MP, Walshe M, McGuire P, Rifkin L, Murray R, Nosarti C (2009) Neural substrates of visual paired associates in young adults with a history of very preterm birth: alterations in fronto-parieto-occipital networks and caudate nucleus. Neuroimage 47:1884–1893

    Article  PubMed  Google Scholar 

  • Neil JJ, Shiran SI, McKinstry RC, Schefft GL, Snyder AZ, Almli CR, Akbudak E, Aronovitz JA, Miller JP, Lee BC, Conturo TE (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209(1):57–66

    Article  CAS  PubMed  Google Scholar 

  • Neil J, Miller J, Mukherjee P, Huppi PS (2002) Diffusion tensor imaging of normal and injured developing human brain—a technical review. NMR Biomed 15(7–8):543–552

    Article  CAS  PubMed  Google Scholar 

  • Nosarti C, Shergill SS, Allin MP, Walshe M, Rifkin L, Murray RM, McGuire PK (2009) Neural substrates of letter fluency processing in young adults who were born very preterm: alterations in frontal and striatal regions. Neuroimage 47:1904–1913

    Article  PubMed  Google Scholar 

  • Olesen PJ, Nagy Z, Westerberg H, Klingberg T (2003) Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network. Brain Res Cogn Brain Res 18(1):48–57

    Article  PubMed  Google Scholar 

  • Partridge SC, Mukherjee P, Henry RG, Miller SP, Berman JI, Jin H, Lu Y, Glenn OA, Ferriero DM, Barkovich AJ, Vigneron DB (2004) Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. Neuroimage 22(3):1302–1314

    Article  PubMed  Google Scholar 

  • Perani D, Saccuman MC, Scifo P, Spada D, Andreolli G, Rovelli R, Baldoli C, Koelsch S (2010) Functional specializations for music processing in the human newborn brain. Proc Natl Acad Sci USA 107(10):4758–4763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perani D, Saccuman MC, Scifo P, Anwander A, Spada D, Baldoli C, Poloniato A, Lohmann G, Friederici AD (2011) Neural language networks at birth. Proc Natl Acad Sci USA 108(38):16056–16061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peterson BS, Vohr B, Kane MJ, Whalen DH, Schneider KC, Katz KH, Zhang H, Duncan CC, Makuch R, Gore JC, Ment LR (2002) A functional magnetic resonance imaging study of language processing and its cognitive correlates in prematurely born children. Pediatrics 110(6):1153–1162

    Article  PubMed  Google Scholar 

  • Repka MX (2002) Ophthalmological problems of the premature infant. Ment Retard Dev Disabil Res Rev 8(4):249–257

    Article  PubMed  Google Scholar 

  • Rushe TM, Rifkin L, Stewart AL, Townsend JP, Roth SC, Wyatt JS, Murray RM (2001) Neuropsychological outcome at adolescence of very preterm birth and its relation to brain structure. Dev Med Child Neurol 43(4):226–233

    Article  CAS  PubMed  Google Scholar 

  • Salvan P, Froudist Walsh S, Allin MP, Walshe M, Murray RM, Bhattacharyya S, McGuire PK, Williams SC, Nosarti C (2014) Road work on memory lane—functional and structural alterations to the learning and memory circuit in adults born very preterm. NeuroImage. doi:10.1016/j.neuroimage.2013.12.031

  • Schafer RJ, Lacadie C, Vohr B, Kesler SR, Katz KH, Schneider KC, Pugh KR, Makuch RW, Reiss AL, Constable RT, Ment LR (2009) Alterations in functional connectivity for language in prematurely born adolescents. Brain 132(Pt 3):661–670

    Article  PubMed Central  PubMed  Google Scholar 

  • Schapiro MB, Schmithorst VJ, Wilke M, Byars AW, Strawsburg RH, Holland SK (2004) BOLD fMRI signal increases with age in selected brain regions in children. NeuroReport 15(17):2575–2578

    Article  PubMed Central  PubMed  Google Scholar 

  • Schneider JF, Il’yasov KA, Hennig J, Martin E (2004) Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology 46(4):258–266

    Article  CAS  PubMed  Google Scholar 

  • Seghier ML, Lazeyras F, Huppi PS (2006) Functional MRI of the newborn. Semin Fetal Neonatal Med 6:479–488

    Article  Google Scholar 

  • Serag A, Aljabar P, Ball G, Counsell SJ, Boardman JP, Rutherford MA, Edwards AD, Hajnal JV, Rueckert D (2012) Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. Neuroimage 59(3):2255–2265

    Article  PubMed  Google Scholar 

  • Smith GC, Gutovich J (2011) Neonatal intensive care unit stress is associated with brain development in preterm infants. Ann Neurol 70(4):541–549

    Article  PubMed  Google Scholar 

  • Smyser CD, Inder TE, Shimony JS, Hill JE, Degnan AJ, Snyder AZ, Neil JJ (2010) Longitudinal analysis of neural network development in preterm infants. Cereb Cortex 20(12):2852–2862

    Article  PubMed Central  PubMed  Google Scholar 

  • Stoelhorst GM, Rijken M, Martens SE, Brand R, den Ouden AL, Wit JM, Veen S, Follow-Up Project on Prematurity (2005) Changes in neonatology: comparison of two cohorts of very preterm infants (gestational age <32 weeks): the project on preterm and small for gestational age infants 1983 and the Leiden follow-up project on prematurity 1996–1997. Pediatrics 115(2):396–405

    Article  PubMed  Google Scholar 

  • Szaflarski JP, Holland SK, Schmithorst VJ, Byars AW (2006) fMRI study of language lateralization in children and adults. Hum Brain Mapp 27(3):202–212

    Article  PubMed Central  PubMed  Google Scholar 

  • Thomas M, Karmiloff-Smith A (2002) Are developmental disorders like cases of adult brain damage? Implications from connectionist modelling. Behav Brain Sci 25:727–750

    PubMed  Google Scholar 

  • Tin W, Wariyar U, Hey E (1997) Changing prognosis for babies of less than 28 weeks’ gestation in the north of England between 1983 and 1994. Northern Neonatal Network. BMJ 314(7074):107–111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Kooij BJ, de Vries LS, Ball G, van Haastert IC, Benders MJ, Groenendaal F, Counsell SJ (2012) Neonatal tract-based spatial statistics findings and outcome in preterm infants. AJNR Am J Neuroradiol 33(1):188–194

    Article  PubMed  Google Scholar 

  • Vannest J, Karunanayaka PR, Schmithorst VJ, Szaflarski JP, Holland SK (2009) Language networks in children: evidence from functional MRI studies. AJR Am J Roentgenol 192(5):1190–1196

    Article  PubMed Central  PubMed  Google Scholar 

  • Volpe JJ (2003) Cerebral white matter injury of the premature infant—more common than you think. Pediatrics 112(1 Pt 1):176–180

    Article  PubMed  Google Scholar 

  • Volpe JJ (2005) Encephalopathy of prematurity includes neuronal abnormalities. Pediatrics 116(1):221–225

    Article  PubMed  Google Scholar 

  • Walch E, Chaudhary T, Herold B, Obladen M (2009) Parental bilingualism is associated with slower cognitive development in very low birth weight infants. Early Hum Dev 85(7):449–454

    Article  PubMed  Google Scholar 

  • Wen SW, Smith G, Yang Q, Walker M (2004) Epidemiology of preterm birth and neonatal outcome. Semin Fetal Neonatal Med 9(6):429–435

    Article  PubMed  Google Scholar 

  • Wilke M, Hauser TK, Krägeloh-Mann I, Lidzba K (2014) Specific impairment of functional connectivity between language regions in former early preterms. Hum Brain Mapp 35(7):3199–3215

    Article  PubMed  Google Scholar 

  • Witelson SF, Pallie W (1973) Left hemisphere specialization for language in the newborn. Neuroanatomical evidence of asymmetry. Brain 96(3):641–646

    Article  CAS  PubMed  Google Scholar 

  • Yamada H, Sadato N, Konishi Y, Kimura K, Tanaka M, Yonekura Y, Ishii Y (1997) A rapid brain metabolic change in infants detected by fMRI. NeuroReport 8(17):3775–3778

    Article  CAS  PubMed  Google Scholar 

  • Yu VY (2000) Developmental outcome of extremely preterm infants. Am J Perinatol 17(2):57–61

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a PRIN Grant from the Italian Ministry for Education, University and Research (No. 2006063917) to Profs. Giuseppe Scotti and Giovanna Weber. We thank Dr. Alessandro Ambrosi for his contribution in statistical analyses and Dr. Susan M. Campbell and Mr. Paul Pasquale Della Rosa for the English language revision of the paper. Finally, the authors would like to thank the parents and the infants who agreed to participate in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Scifo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldoli, C., Scola, E., Della Rosa, P.A. et al. Maturation of preterm newborn brains: a fMRI–DTI study of auditory processing of linguistic stimuli and white matter development. Brain Struct Funct 220, 3733–3751 (2015). https://doi.org/10.1007/s00429-014-0887-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0887-5

Keywords

Navigation