Skip to main content
Log in

Fast transmission from the dopaminergic ventral midbrain to the sensory cortex of awake primates

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Motivated by the increasing evidence that auditory cortex is under control of dopaminergic cell structures of the ventral midbrain, we studied how the ventral tegmental area and substantia nigra affect neuronal activity in auditory cortex. We electrically stimulated 567 deep brain sites in total within and in the vicinity of the two dopaminergic ventral midbrain structures and at the same time, recorded local field potentials and neuronal discharges in cortex. In experiments conducted on three awake macaque monkeys, we found that electrical stimulation of the dopaminergic ventral midbrain resulted in short-latency (~35 ms) phasic activations in all cortical layers of auditory cortex. We were also able to demonstrate similar activations in secondary somatosensory cortex and superior temporal polysensory cortex. The electrically evoked responses in these parts of sensory cortex were similar to those previously described for prefrontal cortex. Moreover, these phasic responses could be reversibly altered by the dopamine D1-receptor antagonist SCH23390 for several tens of minutes. Thus, we speculate that the dopaminergic ventral midbrain exerts a temporally precise, phasic influence on sensory cortex using fast-acting non-dopaminergic transmitters and that their effects are modulated by dopamine on a longer timescale. Our findings suggest that some of the information carried by the neuronal discharges in the dopaminergic ventral midbrain, such as the motivational value or the motivational salience, is transmitted to auditory cortex and other parts of sensory cortex. The mesocortical pathway may thus contribute to the representation of non-auditory events in the auditory cortex and to its associative functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amunts K, Morosan P, Hilbig H, Zilles K (2012) Auditory system: cyto-, myelo-, and receptor architecture of the auditory cortex. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier Academic Press, San Diego, pp 1257–1287

    Google Scholar 

  • Arsenault JT, Nelissen K, Jarraya B, Vanduffel W (2013) Dopaminergic reward signals selectively decrease fMRI activity in primate visual cortex. Neuron 77(6):1174–1186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Atzori M, Kanold PO, Pineda JC, Flores-Hernandez J, Paz RD (2005) Dopamine prevents muscarinic-induced decrease of glutamate release in the auditory cortex. Neuroscience 134(4):1153–1165

    Article  CAS  PubMed  Google Scholar 

  • Au-Young SM, Shen H, Yang CR (1999) Medial prefrontal cortical output neurons to the ventral tegmental area (VTA) and their responses to burst-patterned stimulation of the VTA: neuroanatomical and invivo electrophysiological analyses. Synapse 34:245–255

  • Bao S, Chan VT, Merzenich MM (2001) Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature 412:79–83

    Article  CAS  PubMed  Google Scholar 

  • Bao S, Chan VT, Zhang LI, Merzenich MM (2003) Suppression of cortical representation through backward conditioning. Proc Natl Acad Sci USA 100:1405–1408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14(1):21–27

    Article  CAS  PubMed  Google Scholar 

  • Bernardi G, Cherubini E, Marciani MG, Mercuri N, Stanzione P (1982) Responses of intracellularly recorded cortical neurons to the iontophoretic application of dopamine. Brain Res 245:267–274

    Article  CAS  PubMed  Google Scholar 

  • Birgner C, Nordenankar K, Lundblad M, Mendez JA, Smith C, le Grevès M, Galter D, Olson L, Fredriksson A, Trudeau LE, Kullander K, Wallén-Mackenzie A (2010) VGLUT2 in dopamine neurons is required for psychostimulant-induced behavioral activation. Proc Natl Acad Sci USA 107(1):389–394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Björklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy: classical transmitter in the rat, vol 2. Elsevier/North Holland, Amsterdam, pp 55–122

  • Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68(5):815–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brosch M, Schulz A, Scheich H (1999) Processing of sound sequences in macaque auditory cortex: response enhancement. J Neurophysiol 82(3):1542–1559

    CAS  PubMed  Google Scholar 

  • Brosch M, Scheich H (2008) Tone-sequence analysis in the auditory cortex of awake macaque monkeys. Exp Brain Res 184(3):349–361

  • Brosch M, Selezneva E, Scheich H (2011a) Representation of reward feedback in primate auditory cortex. Front Syst Neurosci 5:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Brosch M, Selezneva E, Scheich H (2011b) Formation of associations in auditory cortex by slow changes of tonic firing. Hear Res 271(1–2):66–73

    Article  PubMed  Google Scholar 

  • Budinger E, Laszcz A, Lison H, Scheich H, Ohl FW (2008) Non-sensory cortical and subcortical connections of the primary auditory cortex in Mongolian gerbils: bottom-up and top-down processing of neuronal information via field AI. Brain Res 1220:2–32

    Article  CAS  PubMed  Google Scholar 

  • Campbell MJ, Lewis DA, Foote SL, Morrison JH (1987) Distribution of choline acetyltransferase-, serotonin-, dopamine-beta-hydroxylase-, tyrosine hydroxylase-immunoreactive fibers in monkey primary auditory cortex. J Comp Neurol 261(2):209–220

    Article  CAS  PubMed  Google Scholar 

  • Carr DB, Sesack SR (2000) GABA-containing neurons in the rat ventral tegmental area project to the prefrontal cortex. Synapse 38(2):114–123

    Article  CAS  PubMed  Google Scholar 

  • Chiodo LA (1988) Dopamine-containing neurons in the mammalian central nervous system: electrophysiology and pharmacology. Neurosci Biobehav Rev 12(1):49–91

    Article  CAS  PubMed  Google Scholar 

  • Chudasama Y, Robbins TW (2004) Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex. Neuropsychopharmacology 29(9):1628–1636

    Article  CAS  PubMed  Google Scholar 

  • Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N (2012) Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482(7383):85–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Delgado JM (1965) Sequential behavior induced repeatedly by stimulation of the red nucleus in free monkeys. Science 148(3675):1361–1363

    Article  CAS  PubMed  Google Scholar 

  • Deniau JM, Thierry AM, Feger J (1980) Electrophysiological identification of mesencephalic ventromedial tegmental (VMT) neurons projecting to the frontal cortex, septum and nucleus accumbens. Brain Res 189:315–326

    Article  CAS  PubMed  Google Scholar 

  • Diana M, Garcia-Munoz M, Richards J, Freed CR (1989) Electrophysiological analysis of dopamine cells from the substantia nigra pars compacta of circling rats. Exp Brain Res 74(3):625–630

    Article  CAS  PubMed  Google Scholar 

  • Durstewitz D, Kröner S, Güntürkün O (1999) The dopaminergic innervation of the avian telencephalon. Prog Neurobiol 59(2):161–195

    Article  CAS  PubMed  Google Scholar 

  • Ferron A, Thierry AM, Le Douarin C, Glowinski J (1984) Inhibitory influence of the mesocortical dopaminergic system on spontaneous activity or excitatory response induced from the thalamic mediodorsal nucleus in the rat medial prefrontal cortex. Brain Res 302(2):257–265

    Article  CAS  PubMed  Google Scholar 

  • Fields HL, Hjelmstad GO, Margolis EB, Nicola SM (2007) Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci 30:289–316

    Article  CAS  PubMed  Google Scholar 

  • Freeman AS, Bunney BS (1987) Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin. Brain Res 405(1):46–55

    Article  CAS  PubMed  Google Scholar 

  • Freeman AS, Meltzer LT, Bunney BS (1985) Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci 36(20):1983–1994

    Article  CAS  PubMed  Google Scholar 

  • Fritz J, Mishkin M, Saunders RC (2005) In search of an auditory engram. Proc Natl Acad Sci USA 102(26):9359–9364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujisawa S, Buzsáki G (2011) A 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities. Neuron 72(1):153–165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao M, Liu CL, Yang S, Jin GZ, Bunney BS, Shi WX (2007) Functional coupling between the prefrontal cortex and dopamine neurons in the ventral tegmental area. J Neurosci 27:5414–5421

    Article  CAS  PubMed  Google Scholar 

  • Gaspar P, Stepniewska I, Kaas JH (1992) Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys. J Comp Neurol 325(1):1–21

    Article  CAS  PubMed  Google Scholar 

  • Gibson AR, Houk JC, Kohlerman NJ (1985) Magnocellular red nucleus activity during different types of limb movement in the macaque monkey. J Physiol 358:527–549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gittelman JX, Perkel DJ, Portfors CV (2013) Dopamine modulates auditory responses in the inferior colliculus in a heterogeneous manner. J Assoc Res Otolaryngol 14(5):719–729

    Article  PubMed Central  PubMed  Google Scholar 

  • Grace AA (1991) Regulation of spontaneous activity and oscillatory spike firing in rat midbrain dopamine neurons recorded in vitro. Synapse 7(3):221–234

    Article  CAS  PubMed  Google Scholar 

  • Grace AA, Bunney BS (1980) Nigral dopamine neurons: intracellular recording and identification with l-dopa injection and histofluorescence. Science 210(4470):654–656

    Article  CAS  PubMed  Google Scholar 

  • Grace AA, Bunney BS (1983) Intracellular and extracellular electrophysiology of nigral dopaminergic neurons—1. Identification and characterization. Neuroscience 10(2):301–315

    Article  CAS  PubMed  Google Scholar 

  • Grace AA, Bunney BS (1984a) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4(11):2877–2890

    CAS  PubMed  Google Scholar 

  • Grace AA, Bunney BS (1984b) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 4(11):2866–2876

    CAS  PubMed  Google Scholar 

  • Grace AA, Onn SP (1989) Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci 9(10):3463–3481

    CAS  PubMed  Google Scholar 

  • Guyenet PG, Aghajanian GK (1978) Antidromic identification of dopaminergic and other output neurons of the rat substantia nigra. Brain Res 150(1):69–84

    Article  CAS  PubMed  Google Scholar 

  • Happel MF, Jeschke M, Ohl FW (2010) Spectral integration in primary auditory cortex attributable to temporally precise convergence of thalamocortical and intracortical input. J Neurosci 30(33):11114–11127

    Article  CAS  PubMed  Google Scholar 

  • Happel MF, Deliano M, Handschuh J, Ohl FW (2014) Dopamine-modulated recurrent corticoefferent feedback in primary sensory cortex promotes detection of behaviorally relevant stimuli. J Neurosci 34(4):1234–1247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Histed MH, Bonin V, Reid RC (2009) Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63(4):508–522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hnasko TS, Hjelmstad GO, Fields HL, Edwards RH (2012) Ventral tegmental area glutamate neurons: electrophysiological properties and projections. J Neurosci 32(43):15076–15085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hosp JA, Pekanovic A, Rioult-Pedotti MS, Luft AR (2011) Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J Neurosci 31:2481–2487

    Article  CAS  PubMed  Google Scholar 

  • Houk JC, Gibson AR, Harvey CF, Kennedy PR, van Kan PL (1988) Activity of primate magnocellular red nucleus related to hand and finger movements. Behav Brain Res 28(1–2):201–206

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Zacharias N, König R, Brosch M, Heil P (2012) Physiological mechanisms of working memory in the auditory cortex of humans and nonhuman primates. 34th ARO Meeting Abstr 470:164

  • Hur EE, Zaborszky L (2005) VGLUT2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization study. J Comp Neurol 483(3):351–373

    Article  PubMed  Google Scholar 

  • Irvine DR (1980) Acoustic input to neurons in feline red nucleus. Brain Res 200(1):169–173

    Article  CAS  PubMed  Google Scholar 

  • Jacob SN, Ott T, Nieder A (2013) Dopamine regulates two classes of primate prefrontal neurons that represent sensory signals. J Neurosci 33(34):13724–13734

    Article  CAS  PubMed  Google Scholar 

  • Jay TM, Glowinski J, Thierry AM (1995) Inhibition of hippocampoprefrontal cortex excitatory responses by the mesocortical DA system. NeuroReport 6(14):1845–1848

    Article  CAS  PubMed  Google Scholar 

  • Jervis BW, Nichols MJ, Johnson TE, Allen E, Hudson NR (1983) A fundamental investigation of the composition of auditory evoked potentials. IEEE Trans Biomed Eng 30(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Kajikawa Y, Schroeder CE (2011) How local is the local field potential? Neuron 72(5):847–858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaur S, Rose HJ, Lazar R, Liang K, Metherate R (2005) Spectral integration in primary auditory cortex: laminar processing of afferent input, in vivo and in vitro. Neuroscience 134(3):1033–1045

    Article  CAS  PubMed  Google Scholar 

  • Kennedy PR, Gibson AR, Houk JC (1986) Functional and anatomic differentiation between parvicellular and magnocellular regions of red nucleus in the monkey. Brain Res 364(1):124–136

    Article  CAS  PubMed  Google Scholar 

  • Kiyatkin EA (1988) Morphine-induced modification of the functional properties of ventral tegmental area neurons in conscious rat. Int J Neurosci 41(1–2):57–70

    Article  CAS  PubMed  Google Scholar 

  • Kiyatkin EA, Zhukov VN (1988) Impulse activity of mesencephalic neurons on nociceptive stimulation in awake rats. Neurosci Behav Physiol 18(5):393–400

    Article  CAS  PubMed  Google Scholar 

  • Kudoh M, Shibuki K (2006) Sound sequence discrimination learning motivated by reward requires dopaminergic D2 receptor activation in the rat auditory cortex. Learn Mem 13:690–698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larsen KD, Yumiya H (1980) The red nucleus of the monkey. Topographic localization of somatosensory input and motor output. Exp Brain Res 40(4):393–404

    Article  CAS  PubMed  Google Scholar 

  • Lavin A, Nogueira L, Lapish CC, Wightman RM, Phillips PE, Seamans JK (2005) Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. J Neurosci 25(20):5013–5023

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA, Campbell MJ, Foote SL, Goldstein M, Morrison JH (1987) The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. J Neurosci 7(1):279–290

    CAS  PubMed  Google Scholar 

  • Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P (1991) Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 40(3):657–671

    Article  CAS  PubMed  Google Scholar 

  • Lovell JM, Mylius J, Scheich H, Brosch M (2014) Hearing in action; auditory properties of neurones in the red nucleus of alert primates. Front Neurosci 8:105

    Article  PubMed Central  PubMed  Google Scholar 

  • Mantz J, Milla C, Glowinski J, Thierry AM (1988) Differential effects of ascending neurons containing dopamine and noradrenaline in the control of spontaneous activity and of evoked responses in the rat prefrontal cortex. Neuroscience 27(2):517–526

    Article  CAS  PubMed  Google Scholar 

  • Margolis EB, Lock H, Hjelmstad GO, Fields HL (2006) The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J Physiol 577(Pt 3):907–924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin RF, Bowden DM (1996) A stereotaxic template atlas of the macaque brain for digital imaging and quantitative neuroanatomy. Neuroimage 4(2):119–150

    Article  CAS  PubMed  Google Scholar 

  • Massion J, Albe-Fessard D (1963) Duality of afferent sensory tracts controlling the activity of the red nucleus. Electroencephalogr Clin Neurophysiol 15:435–454

    Article  CAS  PubMed  Google Scholar 

  • Matsumura M, Sawaguchi T, Kubota K (1990) Modulation of neuronal activities by iontophoretically applied catecholamines and acetylcholine in the primate motor cortex during a visual reaction-time task. Neurosci Res 8(2):138–145

    Article  CAS  PubMed  Google Scholar 

  • Mercuri N, Calabresi P, Stanzione P, Bernardi G (1985) Electrical stimulation of mesencephalic cell groups (A9–A10) produces monosynaptic excitatory potentials in rat frontal cortex. Brain Res 338:192–195

    Article  CAS  PubMed  Google Scholar 

  • Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65(1):37–100

    CAS  PubMed  Google Scholar 

  • Müller-Preuss P, Mitzdorf U (1984) Functional anatomy of the inferior colliculus and the auditory cortex: current source density analyses of click-evoked potentials. Hear Res 16(2):133–142

    Article  PubMed  Google Scholar 

  • Nicholson C, Freeman JA (1975) Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. J Neurophysiol 38(2):356–368

    CAS  PubMed  Google Scholar 

  • Oades RD, Halliday GM (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 434(2):117–165

    Article  CAS  PubMed  Google Scholar 

  • Pirot S, Godbout R, Mantz J, Tassin JP, Glowinski J, Thierry AM (1992) Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: evidence for the involvement of both dopaminergic and GABAergic components. Neuroscience 49:857–865

    Article  CAS  PubMed  Google Scholar 

  • Pistis M, Porcu G, Melis M, Diana M, Gessa GL (2001) Effects of cannabinoids on prefrontal neuronal responses to ventral tegmental area stimulation. Eur J Neurosci 14(1):96–102

    Article  CAS  PubMed  Google Scholar 

  • Ranck JB Jr (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98(3):417–440

    Article  PubMed  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251(4996):947–950

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1994) The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol 71:515–528

    CAS  PubMed  Google Scholar 

  • Sawaguchi T, Matsumura M (1985) Laminar distributions of neurons sensitive to acetylcholine, noradrenaline and dopamine in the dorsolateral prefrontal cortex of the monkey. Neurosci Res 2(4):255–273

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Matsumura M, Kubota K (1986) Catecholamine sensitivities of motor cortical neurons of the monkey. Neurosci Lett 66(2):135–140

    Article  CAS  PubMed  Google Scholar 

  • Sayers BM, Beagley HA, Henshall WR (1974) The mechanism of auditory evoked EEG responses. Nature 247(5441):481–483

    Article  CAS  PubMed  Google Scholar 

  • Scheibner T, Törk I (1987) Ventromedial mesencephalic tegmental (VMT) projections to ten functionally different cortical areas in the cat: topography and quantitative analysis. J Comp Neurol 259(2):247–265

    Article  CAS  PubMed  Google Scholar 

  • Schicknick H, Schott BH, Budinger E, Smalla KH, Riedel A, Seidenbecher CI, Scheich H, Gundelfinger ED, Tischmeyer W (2008) Dopaminergic modulation of auditory cortex-dependent memory consolidation through mTOR. Cereb Cortex 18:2646–2658

    Article  PubMed Central  PubMed  Google Scholar 

  • Schicknick H, Reichenbach N, Smalla KH, Scheich H, Gundelfinger ED, Tischmeyer W (2012) Dopamine modulates memory consolidation of discrimination learning in the auditory cortex. Eur J Neurosci 35(763–74):2012

    Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    CAS  PubMed  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Schultz W, Preuschoff K, Camerer C, Hsu M, Fiorillo CD, Tobler PN, Bossaerts P (2008) Explicit neural signals reflecting reward uncertainty. Philos Trans R Soc Lond B Biol Sci 363(1511):3801–3811

  • Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74:1–58

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Wichmann T, Delong MR (2013) Corticostriatal and mesocortical dopamine systems: do species differences matter? Nat Rev Neurosci 15(1):63

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stark H, Scheich H (1997) Dopaminergic and serotonergic neurotransmission systems are differentially involved in auditory cortex learning: a long-term microdialysis study of metabolites. J Neurochem 68:691–697

    Article  CAS  PubMed  Google Scholar 

  • Steffensen SC, Svingos AL, Pickel VM, Henriksen SJ (1998) Electrophysiological characterization of GABAergic neurons in the ventral tegmental area. J Neurosci 18(19):8003–8015

    CAS  PubMed  Google Scholar 

  • Steinschneider M, Tenke CE, Schroeder CE, Javitt DC, Simpson GV, Arezzo JC, Vaughan HG Jr (1992) Cellular generators of the cortical auditory evoked potential initial component. Electroencephalogr Clin Neurophysiol 84(2):196–200

    Article  CAS  PubMed  Google Scholar 

  • Steinschneider M, Reser DH, Fishman YI, Schroeder CE, Arezzo JC (1998) Click train encoding in primary auditory cortex of the awake monkey: evidence for two mechanisms subserving pitch perception. J Acoust Soc Am 104(5):2935–2955

    Article  CAS  PubMed  Google Scholar 

  • Supèr H, Roelfsema PR (2005) Chronic multiunit recordings in behaving animals: advantages and limitations. Prog Brain Res 147:263–282

    Article  PubMed  Google Scholar 

  • Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9(1–6):321–353

    Article  CAS  PubMed  Google Scholar 

  • Szabo J, Cowan WM (1984) A stereotaxic atlas of the brain of the cynomolgus monkey (Macaca fascicularis). J Comp Neurol 222(2):265–300

    Article  CAS  PubMed  Google Scholar 

  • Ter-Mikaelian M, Sanes DH, Semple MN (2007) Transformation of temporal properties between auditory midbrain and cortex in the awake Mongolian gerbil. J Neurosci 27(23):6091–6102

    Article  CAS  PubMed  Google Scholar 

  • Thierry AM, Blanc G, Sobel A, Stinus L, Golwinski J (1973) Dopaminergic terminals in the rat cortex. Science 182(4111):499–501

    Article  CAS  PubMed  Google Scholar 

  • Thierry AM, Deniau JM, Herve D, Chevalier G (1980) Electrophysiological evidence for non-dopaminergic mesocortical and mesolimbic neurons in the rat. Brain Res 201(1):210–214

    Article  CAS  PubMed  Google Scholar 

  • Thierry AM, Godbout R, Mantz J, Pirot S, Glowinski J (1992) Differential influence of dopaminergic and noradrenergic afferents on their target cells in the rat prefrontal cortex. Clin Neuropharmacol 15 Suppl 1 Pt A:139–140

    Article  Google Scholar 

  • Tseng KY, Mallet N, Toreson KL, Le Moine C, Gonon F, O’Donnell P (2006) Excitatory response of prefrontal cortical fast-spiking interneurons to ventral tegmental area stimulation in vivo. Synapse 59(7):412–417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang HL, Qi J, Morales M (2013) Activation of ventral tegmental area glutamate neurons is rewarding. SfN Abstr 389:05

    Google Scholar 

  • Watanabe Y, Kajiwara R, Takashima I (2009) Optical imaging of rat prefrontal neuronal activity evoked by stimulation of the ventral tegmental area. NeuroReport 20:875–880

    Article  PubMed  Google Scholar 

  • Weis T, Puschmann S, Brechmann A, Thiel CM (2012) Effects of l-dopa during auditory instrumental learning in humans. PLoS ONE 7(12):e52504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams SM, Goldman-Rakic PS (1998) Widespread origin of the primate mesofrontal dopamine system. Cereb Cortex 8:321–345

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Wang HL, Li X, Ng TH, Morales M (2011) Mesocorticolimbic glutamatergic pathway. J Neurosci 31(23):8476–8490

    Article  CAS  PubMed  Google Scholar 

  • Zilles K, Palomero-Gallagher N, Grefkes C, Scheperjans F, Boy C, Amunts K, Schleicher A (2002) Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry. Eur Neuropsychopharmacol 12(6):587–599

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jörg Stadler for MRI measurements and Drs. Eike Budinger, Nikolaos Aggelopoulos, and Daniel Zaldivar for valuable suggestions on the manuscript. The work was supported by the Deutsche Forschungsgemeinschaft (DFG, SFB 779), the federal state of Saxony-Anhalt and the European Regional Development Fund (ERDF 2007–2013) and the Russian Science Foundation (RSCF 14-28-00229).

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Mylius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mylius, J., Happel, M.F.K., Gorkin, A.G. et al. Fast transmission from the dopaminergic ventral midbrain to the sensory cortex of awake primates. Brain Struct Funct 220, 3273–3294 (2015). https://doi.org/10.1007/s00429-014-0855-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0855-0

Keywords

Navigation