Brain Structure and Function

, Volume 220, Issue 6, pp 3087–3099 | Cite as

Frontal glutamate and reward processing in adolescence and adulthood

  • Tobias Gleich
  • Robert C. Lorenz
  • Lydia Pöhland
  • Diana Raufelder
  • Lorenz Deserno
  • Anne Beck
  • Andreas Heinz
  • Simone Kühn
  • Jürgen Gallinat
Original Article


The fronto-limbic network interaction, driven by glutamatergic and dopaminergic neurotransmission, represents a core mechanism of motivated behavior and personality traits. Reward seeking behavior undergoes tremendous changes in adolescence paralleled by neurobiological changes of this network including the prefrontal cortex, striatum and amygdala. Since fronto-limbic dysfunctions also underlie major psychiatric diseases beginning in adolescence, this investigation focuses on network characteristics separating adolescents from adults. To investigate differences in network interactions, the brain reward system activity (slot machine task) together with frontal glutamate concentration (anterior cingulate cortex, ACC) was measured in 28 adolescents and 26 adults employing functional magnetic resonance imaging and magnetic resonance spectroscopy, respectively. An inverse coupling of glutamate concentrations in the ACC and activation of the ventral striatum was observed in adolescents. Further, amygdala response in adolescents was negatively correlated with the personality trait impulsivity. For adults, no significant associations of network components or correlations with impulsivity were found. The inverse association between frontal glutamate concentration and striatal activation in adolescents is in line with the triadic model of motivated behavior stressing the important role of frontal top–down inhibition on limbic structures. Our data identified glutamate as the mediating neurotransmitter of this inhibitory process and demonstrates the relevance of glutamate on the reward system and related behavioral traits like impulsivity. This fronto-limbic coupling may represent a vulnerability factor for psychiatric disorders starting in adolescence but not in adulthood.


Reward processing Aging Adolescence fMRI Ventral striatum Glutamate MRS 



We thank Julia Frenzel, Lucas Adam, Sa Luo, Sabrina Golde, Charlotte Klein and Eva Flemming for help with data acquisition. This study was supported by the German Ministry for Education and Research (BMBF 01GQ0914), the Volkswagen Foundation (Schumpeter Fellowship, II/84 452), the German National Academic Foundation grant to RCL, and by the German Research Foundation (DFG GA707/6-1).

Conflict of interest

All authors declare that they have no conflicts of interest.


  1. Baas D, Aleman A, Kahn RS (2004) Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Res Brain Res Rev 45:96–103. doi: 10.1016/j.brainresrev.2004.02.004 CrossRefPubMedGoogle Scholar
  2. Beck A, Schlagenhauf F, Wüstenberg T et al (2009) Ventral striatal activation during reward anticipation correlates with impulsivity in alcoholics. Biol Psychiatry 66:734–742. doi: 10.1016/j.biopsych.2009.04.035 CrossRefPubMedGoogle Scholar
  3. Bejjani A, O’Neill J, Kim JA et al (2012) Elevated glutamatergic compounds in pregenual anterior cingulate in pediatric autism spectrum disorder demonstrated by 1H MRS and 1H MRSI. PLoS One 7:e38786. doi: 10.1371/journal.pone.0038786 PubMedCentralCrossRefPubMedGoogle Scholar
  4. Bjork JM, Smith AR, Chen G, Hommer DW (2010) Adolescents, adults and rewards: comparing motivational neurocircuitry recruitment using fMRI. PLoS One 5:e11440. doi: 10.1371/journal.pone.0011440 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bloemen OJN, Gleich T, de Koning MB et al (2011) Hippocampal glutamate levels and striatal dopamine D(2/3) receptor occupancy in subjects at ultra high risk of psychosis. Biol Psychiatry 70:e1–e2. doi: 10.1016/j.biopsych.2010.11.030 author reply e3CrossRefPubMedGoogle Scholar
  6. Bozkurt A, Zilles K, Schleicher A et al (2005) Distributions of transmitter receptors in the macaque cingulate cortex. Neuroimage 25:219–229. doi: 10.1016/j.neuroimage.2004.10.040 CrossRefPubMedGoogle Scholar
  7. Brown SM, Manuck SB, Flory JD, Hariri AR (2006) Neural basis of individual differences in impulsivity: contributions of corticolimbic circuits for behavioral arousal and control. Emotion 6:239–245. doi: 10.1037/1528-3542.6.2.239 CrossRefPubMedGoogle Scholar
  8. Carlsson A, Waters N, Carlsson ML (1999) Neurotransmitter interactions in schizophrenia––therapeutic implications. Biol Psychiatry 46:1388–1395CrossRefPubMedGoogle Scholar
  9. Casey BJ, Jones RM (2010) Neurobiology of the adolescent brain and behavior: implications for substance use disorders. J Am Acad Child Adolesc Psychiatry 49:1189–1201. doi: 10.1016/j.jaac.2010.08.017 quiz 1285PubMedCentralPubMedGoogle Scholar
  10. Casey BJ, Getz S, Galvan A (2008) The adolescent brain. Dev Rev 28:62–77. doi: 10.1016/j.dr.2007.08.003 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Davidson RJ, Putnam KM, Larson CL (2000) Dysfunction in the neural circuitry of emotion regulation––a possible prelude to violence. Science 289:591–594. doi: 10.1126/science.289.5479.591 CrossRefPubMedGoogle Scholar
  12. Di Filippo M, Picconi B, Tantucci M et al (2009) Short-term and long-term plasticity at corticostriatal synapses: implications for learning and memory. Behav Brain Res 199:108–118. doi: 10.1016/j.bbr.2008.09.025 CrossRefPubMedGoogle Scholar
  13. Duncan NW, Wiebking C, Tiret B et al (2013) Glutamate concentration in the medial prefrontal cortex predicts resting-state cortical-subcortical functional connectivity in humans. PLoS One 8:e60312. doi: 10.1371/journal.pone.0060312 PubMedCentralCrossRefPubMedGoogle Scholar
  14. Dyck M, Loughead J, Kellermann T et al (2011) Cognitive versus automatic mechanisms of mood induction differentially activate left and right amygdala. Neuroimage 54:2503–2513. doi: 10.1016/j.neuroimage.2010.10.013 CrossRefPubMedGoogle Scholar
  15. Ernst M, Pine DS, Hardin M (2006) Triadic model of the neurobiology of motivated behavior in adolescence. Psychol Med 36:299–312. doi: 10.1017/S0033291705005891 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Fairchild G (2011) The developmental psychopathology of motivation in adolescence. Dev Cogn Neurosci 1:414–429. doi: 10.1016/j.dcn.2011.07.009 CrossRefPubMedGoogle Scholar
  17. Gallinat J, Kunz D, Lang UE et al (2007) Association between cerebral glutamate and human behaviour: the sensation seeking personality trait. Neuroimage 34:671–678. doi: 10.1016/j.neuroimage.2006.10.004 CrossRefPubMedGoogle Scholar
  18. Galvan A, Hare TA, Parra CE et al (2006) Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. J Neurosci 26:6885–6892. doi: 10.1523/JNEUROSCI.1062-06.2006 CrossRefPubMedGoogle Scholar
  19. Gigante AD, Bond DJ, Lafer B et al (2012) Brain glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar disorder: a meta-analysis. Bipolar Disord 14:478–487. doi: 10.1111/j.1399-5618.2012.01033.x CrossRefPubMedGoogle Scholar
  20. Harris AD, Glaubitz B, Near J et al (2013) Impact of frequency drift on gamma-aminobutyric acid-edited MR spectroscopy. Magn Reson Med. doi: 10.1002/mrm.25009 Google Scholar
  21. Hayatbakhsh MR, Najman JM, McGee TR et al (2009) Early pubertal maturation in the prediction of early adult substance use: a prospective study. Addict Abingdon Engl 104:59–66. doi: 10.1111/j.1360-0443.2008.02382.x CrossRefGoogle Scholar
  22. Heinz A, Schlagenhauf F (2010) Dopaminergic dysfunction in schizophrenia: salience attribution revisited. Schizophr Bull 36:472–485. doi: 10.1093/schbul/sbq031 PubMedCentralCrossRefPubMedGoogle Scholar
  23. Hermens DF, Lagopoulos J, Naismith SL et al (2012) Distinct neurometabolic profiles are evident in the anterior cingulate of young people with major psychiatric disorders. Transl Psychiatry 2:e110. doi: 10.1038/tp.2012.35 PubMedCentralCrossRefPubMedGoogle Scholar
  24. Hoerst M, Weber-Fahr W, Tunc-Skarka N et al (2010) Correlation of glutamate levels in the anterior cingulate cortex with self-reported impulsivity in patients with borderline personality disorder and healthy controls. Arch Gen Psychiatry 67:946–954. doi: 10.1001/archgenpsychiatry.2010.93 CrossRefPubMedGoogle Scholar
  25. Holroyd CB, Coles MGH (2008) Dorsal anterior cingulate cortex integrates reinforcement history to guide voluntary behavior. Cortex 44:548–559. doi: 10.1016/j.cortex.2007.08.013 CrossRefPubMedGoogle Scholar
  26. Hommer DW, Knutson B, Fong GW et al (2003) Amygdalar recruitment during anticipation of monetary rewards. Ann NY Acad Sci 985:476–478. doi: 10.1111/j.1749-6632.2003.tb07103.x CrossRefPubMedGoogle Scholar
  27. Insel TR, Miller LP, Gelhard RE (1990) The ontogeny of excitatory amino acid receptors in rat forebrain–I. N-methyl-d-aspartate and quisqualate receptors. Neuroscience 35:31–43CrossRefPubMedGoogle Scholar
  28. Jocham G, Hunt LT, Near J, Behrens TEJ (2012) A mechanism for value-guided choice based on the excitation–inhibition balance in prefrontal cortex. Nat Neurosci 15:960–961. doi: 10.1038/nn.3140 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Kreitzer AC (2009) Physiology and pharmacology of striatal neurons. Annu Rev Neurosci 32:127–147. doi: 10.1146/annurev.neuro.051508.135422 CrossRefPubMedGoogle Scholar
  30. Kühn S, Gallinat J (2011) A quantitative meta-analysis on cue-induced male sexual arousal. J Sex Med 8:2269–2275. doi: 10.1111/j.1743-6109.2011.02322.x CrossRefPubMedGoogle Scholar
  31. Labudda K, Mertens M, Steinkroeger C et al (2014) Lesion side matters––an fMRI study on the association between neural correlates of watching dynamic fearful faces and their evaluation in patients with temporal lobe epilepsy. Epilepsy Behav 31:321–328. doi: 10.1016/j.yebeh.2013.10.014 CrossRefPubMedGoogle Scholar
  32. Liu X, Hairston J, Schrier M, Fan J (2011) Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev 35:1219–1236. doi: 10.1016/j.neubiorev.2010.12.012 PubMedCentralCrossRefPubMedGoogle Scholar
  33. Lovinger DM (2010) Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58:951–961. doi: 10.1016/j.neuropharm.2010.01.008 PubMedCentralCrossRefPubMedGoogle Scholar
  34. Maddock RJ, Buonocore MH (2012) MR spectroscopic studies of the brain in psychiatric disorders. Curr Top Behav Neurosci. doi: 10.1007/7854_2011_197 PubMedGoogle Scholar
  35. Meyer-Lindenberg A, Miletich RS, Kohn PD et al (2002) Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 5:267–271. doi: 10.1038/nn804 CrossRefPubMedGoogle Scholar
  36. Mon A, Durazzo TC, Meyerhoff DJ (2012) Glutamate, GABA, and other cortical metabolite concentrations during early abstinence from alcohol and their associations with neurocognitive changes. Drug Alcohol Depend 125:27–36. doi: 10.1016/j.drugalcdep.2012.03.012 PubMedCentralCrossRefPubMedGoogle Scholar
  37. Nees F, Tzschoppe J, Patrick CJ et al (2012) Determinants of early alcohol use in healthy adolescents: the differential contribution of neuroimaging and psychological factors. Neuropsychopharmacology 37:986–995. doi: 10.1038/npp.2011.282 PubMedCentralCrossRefPubMedGoogle Scholar
  38. Patton JH, Stanford MS, Barratt ES (1995) Factor structure of the Barratt impulsiveness scale. J Clin Psychol 51:768–774CrossRefPubMedGoogle Scholar
  39. Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9:947–957. doi: 10.1038/nrn2513 PubMedCentralPubMedGoogle Scholar
  40. Portella MJ, de Diego-Adeliño J, Gómez-Ansón B et al (2011) Ventromedial prefrontal spectroscopic abnormalities over the course of depression: a comparison among first episode, remitted recurrent and chronic patients. J Psychiatr Res 45:427–434. doi: 10.1016/j.jpsychires.2010.08.010 CrossRefPubMedGoogle Scholar
  41. Prescot AP, Renshaw PF, Yurgelun-Todd DA (2013) γ-Amino butyric acid and glutamate abnormalities in adolescent chronic marijuana smokers. Drug Alcohol Depend 129:232–239. doi: 10.1016/j.drugalcdep.2013.02.028 CrossRefPubMedGoogle Scholar
  42. Richards JM, Plate RC, Ernst M (2013) A systematic review of fMRI reward paradigms used in studies of adolescents vs. adults: the impact of task design and implications for understanding neurodevelopment. Neurosci Biobehav Rev 37:976–991. doi: 10.1016/j.neubiorev.2013.03.004 CrossRefPubMedGoogle Scholar
  43. Schubert R, Ritter P, Wüstenberg T et al (2008) Spatial attention related SEP amplitude modulations covary with BOLD signal in S1––a simultaneous EEG–fMRI study. Cereb Cortex NY N 1991 18:2686–2700. doi: 10.1093/cercor/bhn029 Google Scholar
  44. Schwartz TL, Sachdeva S, Stahl SM (2012) Glutamate neurocircuitry: theoretical underpinnings in schizophrenia. Front Pharmacol 3:195. doi: 10.3389/fphar.2012.00195 PubMedCentralCrossRefPubMedGoogle Scholar
  45. Selemon LD (2013) A role for synaptic plasticity in the adolescent development of executive function. Transl Psychiatry 3:e238. doi: 10.1038/tp.2013.7 PubMedCentralCrossRefPubMedGoogle Scholar
  46. Sesack SR, Carr DB, Omelchenko N, Pinto A (2003) Anatomical substrates for glutamate–dopamine interactions: evidence for specificity of connections and extrasynaptic actions. Ann NY Acad Sci 1003:36–52CrossRefPubMedGoogle Scholar
  47. Silveri MM, Cohen-Gilbert J, Crowley DJ et al (2014) Altered anterior cingulate neurochemistry in emerging adult binge drinkers with a history of alcohol-induced blackouts. Alcohol Clin Exp Res 38:969–979. doi: 10.1111/acer.12346 PubMedCentralCrossRefPubMedGoogle Scholar
  48. Stadler C, Janke W (2003) Concurrent validity of the German version of S.B. Eysenck’s impulsiveness questionnaire for children. Personal Individ Differ 35:51–58. doi: 10.1016/S0191-8869(02)00139-3 CrossRefGoogle Scholar
  49. Stone JM, Howes OD, Egerton A et al (2010) Altered relationship between hippocampal glutamate levels and striatal dopamine function in subjects at ultra high risk of psychosis. Biol Psychiatry 68:599–602. doi: 10.1016/j.biopsych.2010.05.034 CrossRefPubMedGoogle Scholar
  50. Stoy M, Schlagenhauf F, Sterzer P et al (2012) Hyporeactivity of ventral striatum towards incentive stimuli in unmedicated depressed patients normalizes after treatment with escitalopram. J Psychopharmacol Oxf Engl 26:677–688. doi: 10.1177/0269881111416686 CrossRefGoogle Scholar
  51. Surmeier DJ, Ding J, Day M et al (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228–235. doi: 10.1016/j.tins.2007.03.008 CrossRefPubMedGoogle Scholar
  52. Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289. doi: 10.1006/nimg.2001.0978 CrossRefPubMedGoogle Scholar
  53. Van Leijenhorst L, Zanolie K, Van Meel CS et al (2010) What motivates the adolescent? Brain regions mediating reward sensitivity across adolescence. Cereb Cortex NY N 1991 20:61–69. doi: 10.1093/cercor/bhp078 Google Scholar
  54. Vrtička P, Sander D, Vuilleumier P (2012) Lateralized interactive social content and valence processing within the human amygdala. Front Hum Neurosci 6:358. doi: 10.3389/fnhum.2012.00358 PubMedCentralPubMedGoogle Scholar
  55. Wong WC, Ford KA, Pagels NE et al (2013) Adolescents are more vulnerable to cocaine addiction: behavioral and electrophysiological evidence. J Neurosci 33:4913–4922. doi: 10.1523/JNEUROSCI.1371-12.2013 PubMedCentralCrossRefPubMedGoogle Scholar
  56. Yeo RA, Thoma RJ, Gasparovic C et al (2013) Neurometabolite concentration and clinical features of chronic alcohol use: a proton magnetic resonance spectroscopy study. Psychiatry Res 211:141–147. doi: 10.1016/j.pscychresns.2012.05.005 PubMedCentralCrossRefPubMedGoogle Scholar
  57. Yücel M, Wood SJ, Wellard RM et al (2008) Anterior cingulate glutamate–glutamine levels predict symptom severity in women with obsessive-compulsive disorder. Aust NZ J Psychiatry 42:467–477. doi: 10.1080/00048670802050546 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tobias Gleich
    • 1
    • 3
  • Robert C. Lorenz
    • 1
    • 2
  • Lydia Pöhland
    • 1
  • Diana Raufelder
    • 4
  • Lorenz Deserno
    • 1
    • 6
  • Anne Beck
    • 1
  • Andreas Heinz
    • 1
  • Simone Kühn
    • 1
    • 5
  • Jürgen Gallinat
    • 1
  1. 1.Department of Psychiatry and PsychotherapyCharité-Universitätsmedizin BerlinBerlinGermany
  2. 2.Institute of PsychologyHumboldt Universität zu BerlinBerlinGermany
  3. 3.NeuroCure Excellence Cluster/Medical NeuroscienceBerlinGermany
  4. 4.Department of Educational Science and Psychology, Methods and EvaluationFreie Universität BerlinBerlinGermany
  5. 5.Center for Lifespan Psychology, Max Planck Institute for Human DevelopmentBerlinGermany
  6. 6.Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany

Personalised recommendations