Advertisement

Brain Structure and Function

, Volume 220, Issue 5, pp 2953–2966 | Cite as

A new automated 3D detection of synaptic contacts reveals the formation of cortico-striatal synapses upon cocaine treatment in vivo

  • Nicolas HeckEmail author
  • Marc Dos Santos
  • Brahim Amairi
  • Marine Salery
  • Antoine Besnard
  • Etienne Herzog
  • Thomas Boudier
  • Peter Vanhoutte
  • Jocelyne Caboche
Original Article

Abstract

Addiction can be considered as a form of neuronal adaptation within the reward circuitry. Upon psychostimulant administration, long-term behavioral adaptations are associated with synaptic plasticity and morphological changes of medium spiny neurons (MSN) from the striatum. Increased spine density onto MSN in response to chronic cocaine exposure in mice has been described for more than a decade, but no evidence indicates that these newly formed spines establish connections. We developed a method for labeling, automated detection and morphological analysis of synaptic contacts. Individual labeling of neurons in mice that express the Vesicular GLUtamate Transporter-1 fused to Venus allows visualization of both dendritic spines and axonal boutons. Automated three-dimensional segmentation and morphometric analysis retrieve information on thousands of synapses at high resolution. We used this method to demonstrate that new cortico-striatal connections are formed in the striatum upon chronic cocaine. We also show that the cortical input weight is preserved over other cerebral inputs and that the newly formed spines contact pre-existing axonal boutons. Our results pave the way for other studies, since our method can be applied to any other neuronal type as demonstrated herein for glutamatergic connections on pyramidal neurons and Purkinje cells.

Keywords

Cocaine Striatum Dendritic spine Axonal bouton 3D segmentation VGLUT1 

Notes

Acknowledgments

This work was supported by Centre National pour la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), University Pierre and Marie Curie (UPMC), Agence Nationale pour la Recherche (ANR, ANR-08-BLAN-0287) and Fondation Jérôme Lejeune and the Labex Bio-Psy cluster of excellence. We wish to thank Dr. Susanne Bolte and Richard Schwartzmann from the Cellular Imaging facility of the IBPS (Institut de Biologie Paris-Seine) for expert assistance on microscopy and metrological analysis of the setup. We thank Dr. Kätlin Slim the care of the VGLUT1venus mouse line and Dr. Ann Lohof for intracellular filling of Purkinje cells.

Conflict of interest

The authors declare no competing financial interests.

References

  1. Alcantara AA, Lim HY, Floyd CE, Garces J, Mendenhall JM, Lyons CL, Berlanga ML (2011) Cocaine- and morphine-induced synaptic plasticity in the nucleus accumbens. Synapse 65(4):309–320PubMedCentralCrossRefPubMedGoogle Scholar
  2. Becker N, Wierenga CJ, Fonseca R, Bonhoeffer T, Nägerl UV (2008) LTD induction causes morphological changes of presynaptic boutons and reduces their contacts with spines. Neuron 60(4):590–597CrossRefPubMedGoogle Scholar
  3. Britt JP, Benaliouad F, McDevitt RA, Stuber GD, Wise RA, Bonci A (2012) Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76(4):790–803PubMedCentralCrossRefPubMedGoogle Scholar
  4. Chen Y, Akin O, Nern A, Tsui CY, Pecot MY, Zipursky SL (2014) Cell-type-specific labeling of synapses in vivo through synaptic tagging with recombination. Neuron 81(2):280–293PubMedCentralCrossRefPubMedGoogle Scholar
  5. DeFelipe J (2010) From the connectome to the synaptome: an epic love story. Science 330(6008):1198–1201CrossRefPubMedGoogle Scholar
  6. Doig NM, Moss J, Bolam JP (2010) Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J Neurosci 30(44):14610–14618CrossRefPubMedGoogle Scholar
  7. Dumitriu D, Laplant Q, Grossman YS, Dias C, Janssen WG, Russo SJ, Morrison JH, Nestler EJ (2012) Subregional, dendritic compartment, and spine subtype specificity in cocaine regulation of dendritic spines in the nucleus accumbens. J Neurosci 32(20):6957–6966PubMedCentralCrossRefPubMedGoogle Scholar
  8. Fremeau RT Jr, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Bellocchio EE, Fortin D, Storm-Mathisen J, Edwards RH (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31(2):247–260CrossRefPubMedGoogle Scholar
  9. Fremeau RT Jr, Voglmaier S, Seal RP, Edwards RH (2004) VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 27(2):98–103CrossRefPubMedGoogle Scholar
  10. Gan WB, Grutzendler J, Wong WT, Wong RO, Lichtman JW (2000) Multicolor “Diolistic” labeling of the nervous system using lipophilic dye combinations. Neuron 27(2):219–225CrossRefPubMedGoogle Scholar
  11. Groenewegen HJ, Wright CI, Beijer AV, Voorn P (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877:49–63CrossRefPubMedGoogle Scholar
  12. Heck N, Betuing S, Vanhoutte P, Caboche J (2012) A deconvolution method to improve automated 3D-analysis of dendritic spines: application to a mouse model of Huntington’s disease. Brain Struct Funct 217(2):421–434CrossRefPubMedGoogle Scholar
  13. Helmstaedter M, Briggman KL, Denk W (2008) 3D structural imaging of the brain with photons and electrons. Curr Opin Neurobiol 18(6):633–641CrossRefPubMedGoogle Scholar
  14. Herzog E, Bellenchi GC, Gras C, Bernard V, Ravassard P, Bedet C, Gasnier B, Giros B, El Mestikawy S (2001) The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 21(22):RC181PubMedGoogle Scholar
  15. Herzog E, Nadrigny F, Silm K, Biesemann C, Helling I, Bersot T, Steffens H, Schwartzmann R, Nägerl UV, El Mestikawy S, Rhee J, Kirchhoff F, Brose N (2011) In vivo imaging of intersynaptic vesicle exchange using VGLUT1 Venus knock-in mice. J Neurosci 31(43):15544–15559CrossRefPubMedGoogle Scholar
  16. Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10(9):647–658CrossRefPubMedGoogle Scholar
  17. Huang YH, Lin Y, Mu P, Lee BR, Brown TE, Wayman G, Marie H, Liu W, Yan Z, Sorg BA, Schlüter OM, Zukin RS, Dong Y (2009) In vivo cocaine experience generates silent synapses. Neuron 63(1):40–47PubMedCentralCrossRefPubMedGoogle Scholar
  18. Hübener M, Bonhoeffer T (2010) Searching for engrams. Neuron 67(3):363–371CrossRefPubMedGoogle Scholar
  19. Huerta-Ocampo I, Mena-Segovia J, Bolam JP (2013) Convergence of cortical and thalamic input to direct and indirect pathway medium spiny neurons in the striatum. Brain Struct Funct. doi: 10.1007/s00429-013-0601-z PubMedCentralPubMedGoogle Scholar
  20. Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598CrossRefPubMedGoogle Scholar
  21. Kalivas PW, Volkow ND (2011) New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol Psychiatry 16(10):974–986PubMedCentralCrossRefPubMedGoogle Scholar
  22. Kim J, Zhao T, Petralia RS, Yu Y, Peng H, Myers E, Magee JC (2011) mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nat Methods 9(1):96–102PubMedCentralCrossRefPubMedGoogle Scholar
  23. Knott GW, Holtmaat A, Wilbrecht L, Welker E, Svoboda K (2006) Spine growth precedes synapse formation in the adult neocortex in vivo. Nat Neurosci 9(9):1117–11124CrossRefPubMedGoogle Scholar
  24. Lee BR, Dong Y (2011) Cocaine-induced metaplasticity in the nucleus accumbens: silent synapse and beyond. Neuropharmacology 61(7):1060–1069PubMedCentralCrossRefPubMedGoogle Scholar
  25. Lüscher C, Malenka RC (2011) Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69(4):650–663PubMedCentralCrossRefPubMedGoogle Scholar
  26. MacAskill AF, Little JP, Cassel JM, Carter AG (2012) Subcellular connectivity underlies pathway-specific signaling in the nucleus accumbens. Nat Neurosci 15(12):1624–1626PubMedCentralCrossRefPubMedGoogle Scholar
  27. Mahon S, Deniau JM, Charpier S (2007) Corticostriatal plasticity: life after the depression. Trends Neurosci 27(8):460–467CrossRefGoogle Scholar
  28. Meijering M (2012) Cell segmentation: 50 years down the road. Signal Process Mag IEEE 29(5):140–145CrossRefGoogle Scholar
  29. Mishchenko Y, Hu T, Spacek J, Mendenhall J, Harris KM, Chklovskii DB (2010) Ultrastructural analysis of hippocampal neuropil from the connectomics perspective. Neuron 67(6):1009–1020PubMedCentralCrossRefPubMedGoogle Scholar
  30. Ollion J, Cochennec J, Loll F, Escudé C, Boudier T (2013) TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics 29(14):1840–1841PubMedCentralCrossRefPubMedGoogle Scholar
  31. Osten P, Margrie TW (2013) Mapping brain circuitry with a light microscope. Nat Methods 10(6):515–523PubMedCentralCrossRefPubMedGoogle Scholar
  32. Pascoli V, Turiault M, Lüscher C (2011) Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature 481(7379):71–75CrossRefPubMedGoogle Scholar
  33. Pascoli V, Terrier J, Espallergues J, Valjent E, O’Connor EC, Lüscher C (2014) Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature 509(7501):459–464CrossRefPubMedGoogle Scholar
  34. Robinson TE, Kolb B (1999) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur J Neurosci 11(5):1598–1604CrossRefPubMedGoogle Scholar
  35. Rodriguez A, Ehlenberger DB, Dickstein DL, Hof PR, Wearne SL (2008) Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One 3(4):e1997PubMedCentralCrossRefPubMedGoogle Scholar
  36. Rotterman TM, Nardelli P, Cope TC, Alvarez FJ (2014) Normal distribution of VGLUT1 synapses on spinal motoneuron dendrites and their reorganization after nerve injury. J Neurosci 34(10):3475–3492PubMedCentralCrossRefPubMedGoogle Scholar
  37. Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ (2010) The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci 33(6):267–276PubMedCentralCrossRefPubMedGoogle Scholar
  38. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefPubMedGoogle Scholar
  39. Schoonover CE, Tapia JC, Schilling VC, Wimmer V, Blazeski R, Zhang W, Mason CA, Bruno RM (2014) Comparative strength and dendritic organization of thalamocortical and corticocortical synapses onto excitatory layer 4 neurons. J Neurosci 34(20):6746–6758PubMedCentralCrossRefPubMedGoogle Scholar
  40. Sesack SR, Grace AA (2010) Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology 35(1):27–47PubMedCentralCrossRefPubMedGoogle Scholar
  41. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 12:905–909CrossRefGoogle Scholar
  42. Shen HW, Toda S, Moussawi K, Bouknight A, Zahm DS, Kalivas PW (2009) Altered dendritic spine plasticity in cocaine-withdrawn rats. J Neurosci 29(9):2876–2884PubMedCentralCrossRefPubMedGoogle Scholar
  43. Spiga S, Acquas E, Puddu MC, Mulas G, Lintas A, Diana M (2011) Simultaneous golgi-cox and immunofluorescence using confocal microscopy. Brain Struct Funct 216(3):171–182PubMedCentralCrossRefPubMedGoogle Scholar
  44. Stepanyants A, Chklovskii DB (2005) Neurogeometry and potential synaptic connectivity. Trends Neurosci 28(7):387–394CrossRefPubMedGoogle Scholar
  45. van Dongen YC, Mailly P, Thierry AM, Groenewegen HJ, Deniau JM (2008) Three-dimensional organization of dendrites and local axon collaterals of shell and core medium-sized spiny projection neurons of the rat nucleus accumbens. Brain Struct Funct 213(1–2):129–147PubMedCentralCrossRefPubMedGoogle Scholar
  46. Wickersham IR, Feinberg EH (2012) New technologies for imaging synaptic partners. Curr Opin Neurobiol 22(1):121–127CrossRefPubMedGoogle Scholar
  47. Wickersham IR, Sullivan HA, Seung HS (2013) Axonal and subcellular labelling using modified rabies viral vectors. Nat Commun 4:2332CrossRefPubMedGoogle Scholar
  48. Wilson CJ, Groves P-M, Kitai S-T, Linder J-C (1983) Three-dimensional structure of dendritic spines in the rat neostriatum. J Neurosci 3(2):383–388PubMedGoogle Scholar
  49. Wouterlood FG, Boekel AJ, Meijer GA, Beliën JA (2007) Computer-assisted estimation in the CNS of 3D multimarker ‘overlap’ or ‘touch’ at the level of individual nerve endings: a confocal laser scanning microscope application. J Neurosci Res 85(6):1215–1228CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nicolas Heck
    • 1
    • 2
    • 3
    Email author
  • Marc Dos Santos
    • 1
    • 2
    • 3
  • Brahim Amairi
    • 1
    • 2
    • 3
  • Marine Salery
    • 1
    • 2
    • 3
  • Antoine Besnard
    • 1
    • 2
    • 3
    • 4
  • Etienne Herzog
    • 5
    • 6
  • Thomas Boudier
    • 3
  • Peter Vanhoutte
    • 1
    • 2
    • 3
  • Jocelyne Caboche
    • 1
    • 2
    • 3
  1. 1.INSERM, UMR-S 1130, Neuroscience Paris SeineParisFrance
  2. 2.CNRS, UMR 8246, Neuroscience Paris SeineParisFrance
  3. 3.Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris SeineParisFrance
  4. 4.Center for Regenerative Medicine, Massachusetts General HospitalBostonUSA
  5. 5.Université Bordeaux, Institut Interdisciplinaire de Neurosciences, UMR 5297BordeauxFrance
  6. 6.CNRS, Institut Interdisciplinaire de Neurosciences, UMR 5297BordeauxFrance

Personalised recommendations