Skip to main content
Log in

Increased number of TH-immunoreactive cells in the ventral tegmental area after deep brain stimulation of the anterior nucleus of the thalamus

  • Short Communication
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Dopamine (DA) has been long implicated with the processes of memory. In long-term memory, the hippocampus and ventral tegmental area (VTA) use DA to enhance long-term potentiation, while prefrontal DA D1 receptors are involved in working memory. Deep brain stimulation (DBS) of specific brain areas have been shown to affect memory impairments in animal models. Here, we tested the hypothesis that DBS could reverse memory impairments by increasing the number of dopaminergic cells in the VTA. Rats received DBS at the level of the mammillothalamic tract, the anterior nucleus of the thalamus, and entorhinal cortex before euthanasia. These regions are part of the so-called memory circuit. Brain sections were processed for c-Fos and tyrosine hydroxylase (TH) immunocytochemistry in the VTA and the substantia nigra pars compacta (SNc). c-Fos, TH and c-Fos/TH immunoreactive cells were analyzed by means of stereology and confocal microscopy. Our results showed that DBS of the anterior nucleus of the thalamus induced substantial higher numbers of TH-immunoreactive cells in the VTA, while there were no significant differences between the experimental groups in the number of TH immunoreactive cells in the SNc, c-Fos immunoreactive cells and c-Fos/TH double-labeled cells in both the SNc and VTA. Our findings suggest a phenotypic switch, or neurotransmitter respecification, of DAergic cells specifically in the VTA which may be induced by DBS in the anterior nucleus of the thalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Aumann TD, Egan K, Lim J, Boon WC, Bye CR, Chua HK, Baban N, Parish CL, Bobrovskaya L, Dickson P, Horne MK (2011) Neuronal activity regulates expression of tyrosine hydroxylase in adult mouse substantia nigra pars compacta neurons. J Neurochem 116(4):646–658. doi:10.1111/j.1471-4159.2010.07151.x

    Article  CAS  PubMed  Google Scholar 

  • Aumann TD, Tomas D, Horne MK (2013) Environmental and behavioral modulation of the number of substantia nigra dopamine neurons in adult mice. Brain Behav 3(6):617–625. doi: 10.1002/brb3.163

  • Becker JB, Rudick CN, Jenkins WJ (2001) The role of dopamine in the nucleus accumbens and striatum during sexual behavior in the female rat. J Neurosci Off J Soc Neurosci 21(9):3236–3241

    CAS  Google Scholar 

  • Carr KD (2007) Chronic food restriction: enhancing effects on drug reward and striatal cell signaling. Physiol Behav 91(5):459–472. doi:10.1016/j.physbeh.2006.09.021

    Article  CAS  PubMed  Google Scholar 

  • Child ND, Benarroch EE (2013) Anterior nucleus of the thalamus: functional organization and clinical implications. Neurology 81(21):1869–1876. doi:10.1212/01.wnl.0000436078.95856.56

    Article  PubMed  Google Scholar 

  • Dela Cruz JA, Icaza-Cukali D, Tayabali H, Sampson C, Galanopoulos V, Bamshad D, Touzani K, Sclafani A, Bodnar RJ (2012) Roles of dopamine D1 and D2 receptors in the acquisition and expression of fat-conditioned flavor preferences in rats. Neurobiol Learn Mem 97(3):332–337. doi:10.1016/j.nlm.2012.01.008

    Article  CAS  PubMed  Google Scholar 

  • Dulcis D, Jamshidi P, Leutgeb S, Spitzer NC (2013) Neurotransmitter switching in the adult brain regulates behavior. Science 340(6131):449–453. doi:10.1126/science.1234152

    Article  CAS  PubMed  Google Scholar 

  • Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, Oommen K, Osorio I, Nazzaro J, Labar D, Kaplitt M, Sperling M, Sandok E, Neal J, Handforth A, Stern J, DeSalles A, Chung S, Shetter A, Bergen D, Bakay R, Henderson J, French J, Baltuch G, Rosenfeld W, Youkilis A, Marks W, Garcia P, Barbaro N, Fountain N, Bazil C, Goodman R, McKhann G, Babu Krishnamurthy K, Papavassiliou S, Epstein C, Pollard J, Tonder L, Grebin J, Coffey R, Graves N, Group SS (2010) Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51(5):899–908. doi:10.1111/j.1528-1167.2010.02536.x

    Article  PubMed  Google Scholar 

  • Graber KD, Fisher RS (2012) Deep brain stimulation for epilepsy: animal models. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies. 4th edn, Bethesda (MD)

  • Hamani C, Stone SS, Garten A, Lozano AM, Winocur G (2011) Memory rescue and enhanced neurogenesis following electrical stimulation of the anterior thalamus in rats treated with corticosterone. Exp Neurol 232(1):100–104. doi:10.1016/j.expneurol.2011.08.023

    Article  CAS  PubMed  Google Scholar 

  • Hescham S, Lim LW, Jahanshahi A, Blokland A, Temel Y (2013a) Deep brain stimulation in dementia-related disorders. Neurosci Biobehav Rev 37(10):2666-2675. doi:10.1016/j.neubiorev.2013.09.002

  • Hescham S, Lim LW, Jahanshahi A, Steinbusch HW, Prickaerts J, Blokland A, Temel Y (2013b) Deep brain stimulation of the forniceal area enhances memory functions in experimental dementia: the role of stimulation parameters. Brain Stimul 6(1):72–77. doi:10.1016/j.brs.2012.01.008

    Article  PubMed  Google Scholar 

  • Jahanshahi A, Vlamings R, van Roon-Mom WM, Faull RL, Waldvogel HJ, Janssen ML, Temel Y (2013) Changes in brainstem serotonergic and dopaminergic cell populations in experimental and clinical Huntington’s disease. Neuroscience 15(238):71–81. doi:10.1016/j.neuroscience.2013.01.071 (Epub 2013 Feb 9)

    Article  Google Scholar 

  • Laxton AW, Tang-Wai DF, McAndrews MP, Zumsteg D, Wennberg R, Keren R, Wherrett J, Naglie G, Hamani C, Smith GS, Lozano AM (2010) A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann Neurol 68(4):521–534. doi:10.1002/ana.22089

    Article  CAS  PubMed  Google Scholar 

  • Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46(5):703–713. doi:10.1016/j.neuron.2005.05.002

    Article  CAS  PubMed  Google Scholar 

  • Margolis EB, Lock H, Hjelmstad GO, Fields HL (2006) The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J Physiol 577(Pt 3):907–924. doi:10.1113/jphysiol.2006.117069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oades RD, Halliday GM (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 434(2):117–165

    Article  CAS  PubMed  Google Scholar 

  • Stone SS, Teixeira CM, Devito LM, Zaslavsky K, Josselyn SA, Lozano AM, Frankland PW (2011) Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J Neurosci 31(38):13469–13484. doi:10.1523/JNEUROSCI.3100-11.2011

    Article  CAS  PubMed  Google Scholar 

  • Temel Y, Visser-Vandewalle V, Kaplan S, Kozan R, Daemen MA, Blokland A, Schmitz C, Steinbusch HW (2006) Protection of nigral cell death by bilateral subthalamic nucleus stimulation. Brain Res 1120(1):100–105. doi:10.1016/j.brainres.2006.08.082

    Article  CAS  PubMed  Google Scholar 

  • Theodore WH, Fisher RS (2004) Brain stimulation for epilepsy. Lancet Neurol 3(2):111–118 pii: S1474442203006641

    Article  PubMed  Google Scholar 

  • Wichmann T, Delong MR (2006) Deep brain stimulation for neurologic and neuropsychiatric disorders. Neuron 52(1):197–204. doi:10.1016/j.neuron.2006.09.022

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Momma S, Delfani K, Carlen M, Cassidy RM, Johansson CB, Janson AM (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 100:7925–7930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The micrographs in this paper were taken with a confocal spinning disk microscope financed by The Netherlands Organisation for Scientific Research (NWO), Grant number 911-06-003.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. A. D. Dela Cruz or A. Jahanshahi.

Additional information

J. A. D. Dela Cruz and S. Hescham have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dela Cruz, J.A.D., Hescham, S., Adriaanse, B. et al. Increased number of TH-immunoreactive cells in the ventral tegmental area after deep brain stimulation of the anterior nucleus of the thalamus. Brain Struct Funct 220, 3061–3066 (2015). https://doi.org/10.1007/s00429-014-0832-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0832-7

Keywords

Navigation