Skip to main content
Log in

Reduced density of geniculocortical terminals in foveal layer 4A in the macaque primary visual cortex: relationship to S-cone density

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The S-cone system is closely linked to the perception of blue/yellow. The trichromatic system of Old-World monkeys and humans has relatively few S-cones in the fovea. In this study, we investigated the distribution of putative S-cone afferents in macaques primary visual cortex (V1) which form a characteristic honeycomb arrangement in layer 4A. It was hypothesized that if there were a low number of S-cone opponent projecting neurons in central vision then this would be seen as a reduction in afferents in foveal layer 4A. Recent studies have shown that the vesicular glutamate transporter 2 (VGlut2) is a marker for thalamic afferent terminals in cortex. The distribution of VGlut2-immunoreactive (-ir) terminals was studied in the foveal and perifoveal representation of V1. It was found that there was a substantial reduction in the terminal density in the foveal representation: the density was 5–6 times lower in the foveal V1 than in regions representing perifoveal eccentricities of 1°–2° and beyond. These findings may provide the cortical substrate of foveal tritanopia, the reduced blue perceptual ability for small fields in the center of gaze.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Balaram P, Hackett TA, Kaas JH (2013) Differential expression of vesicular glutamate transporters 1 and 2 may identify distinct modes of glutamatergic transmission in the macaque visual system. J Chem Neuroanat 50–51:21–38

    Article  PubMed  Google Scholar 

  • Brodmann K (1909) Localisation in the cerebral cortex (trans: Garey LJ). Smith-Gordon, London

    Google Scholar 

  • Carroll EW, Wong-Riley MT (1984) Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in the striate cortex of the squirrel monkey. J Comp Neurol 222:1–17

    Article  CAS  PubMed  Google Scholar 

  • Casagrande VA, Yazar F, Jones KD, Ding Y (2007) The morphology of the koniocellular axon pathway in the macaque monkey. Cereb Cortex 17:2334–2345

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Callaway EM (2003) Parallel colour-opponent pathways to primary visual cortex. Nature 426:668–671

    Article  CAS  PubMed  Google Scholar 

  • Coleman JE, Nahmani M, Gavornik JP, Haslinger R, Heynen AJ, Erisir A, Bear MF (2010) Rapid structural remodeling of thalamocortical synapses parallels experience-dependent functional plasticity in mouse primary visual cortex. J Neurosci 30:9670–9682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Curcio CA, Allen KA, Sloan KR, Lerea CL, Hurley JB, Klock IB, Milam AH (1991) Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J Comp Neurol 312:610–624

    Article  CAS  PubMed  Google Scholar 

  • Dacey DM, Crook JD, Packer OS (2014) Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina. Vis Neurosci 31:139–152

  • Daniel PM, Whitteridge D (1961) The representation of the visual field on the cerebral cortex in monkeys. J Physiol 159:203–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Monasterio FM, McCrane EP, Newlander JK, Schein SJ (1985) Density profile of blue-sensitive cones along the horizontal meridian of macaque retina. Invest Ophthalmol Vis Sci 26:289–302

    PubMed  Google Scholar 

  • Dow BM, Snyder AZ, Vautin RG, Bauer R (1981) Magnification factor and receptive field size in foveal striate cortex of the monkey. Exp Brain Res 44:213–228

    Article  CAS  PubMed  Google Scholar 

  • Dow BM, Vautin RG, Bauer R (1985) The mapping of visual space onto foveal striate cortex in the macaque monkey. J Neurosci 5:890–902

    CAS  PubMed  Google Scholar 

  • Fitzpatrick D, Lund JS, Blasdel GG (1985) Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C. J Neurosci 5:3329–3349

    CAS  PubMed  Google Scholar 

  • Garcia-Marin V, Ahmed TH, Afzal YC, Hawken MJ (2013) Distribution of vesicular glutamate transporter 2 (VGlut2) in the primary visual cortex of the macaque and human. J Comp Neurol 521:130–151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guld C, Bertulis A (1976) Representation of fovea in the striate cortex of vervet monkey, Cercopithecus aethiops pygerythrus. Vision Res 16:629–631

    Article  CAS  PubMed  Google Scholar 

  • Hässler R (1967) Comparative anatomy of central visual systems in day-and night-active primates. In: Hassler R, Stephan H (eds) Evolution of the Forebrain. Plenum Press, New York, pp 419–434

    Google Scholar 

  • Hendry SH, Reid RC (2000) The koniocellular pathway in primate vision. Annu Rev Neurosci 23:127–153

    Article  CAS  PubMed  Google Scholar 

  • Hendry SH, Yoshioka T (1994) A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264:575–577

    Article  CAS  PubMed  Google Scholar 

  • Horton JC (1984) Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. Phil Trans R Soc Lond B 304:199–253

    Article  CAS  Google Scholar 

  • Horton JC, Hubel DH (1981) Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292:762–764

    Article  CAS  PubMed  Google Scholar 

  • Jacobs GH (2012) The evolution of vertebrate color vision. Adv Exp Med Biol 739:156–172

    Article  CAS  PubMed  Google Scholar 

  • König A (1894) Ueber den menschlichen Sehpurpur und seine Bedeutung fur das Sehen. Sitz Akad Wiss (Berlin): 577–598

  • Lee BB (2011) Visual pathways and psychophysical channels in the primate. J Physiol 589:41–47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lei W, Deng Y, Liu B, Mu S, Guley NM, Wong T, Reiner A (2013) Confocal laser scanning microscopy and ultrastructural study of VGLUT2 thalamic input to striatal projection neurons in rats. J Comp Neurol 521:1354–1377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lund JS (1973) Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta). J Comp Neurol 147:455–496

    Article  CAS  PubMed  Google Scholar 

  • Marc RE, Sperling HG (1977) Chromatic organization of primate cones. Science 196:454–456

    Article  CAS  PubMed  Google Scholar 

  • Marion R, Li K, Purushothaman G, Jiang Y, Casagrande VA (2013) Morphological and neurochemical comparisons between pulvinar and V1 projections to V2. J Comp Neurol 521:813–832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin PR, Grunert U (1999) Analysis of the short wavelength-sensitive (“blue”) cone mosaic in the primate retina: comparison of New World and Old World monkeys. J Comp Neurol 406:1–14

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM, Jenkins WM (1993) Reorganization of cortical representations of the hand following alterations of skin inputs induced by nerve injury, skin island transfers, and experience. J Hand Ther 6:89–104

    Article  CAS  PubMed  Google Scholar 

  • Nahmani M, Erisir A (2005) VGlut2 immunochemistry identifies thalamocortical terminals in layer 4 of adult and developing visual cortex. J Comp Neurol 484:458–473

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Hioki H, Fujiyama F, Kaneko T (2005) Postnatal changes of vesicular glutamate transporter (VGlut)1 and VGlut2 immunoreactivities and their colocalization in the mouse forebrain. J Comp Neurol 492:263–288

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Watakabe A, Hioki H, Fujiyama F, Tanaka Y, Yamamori T, Kaneko T (2007) Transiently increased colocalization of vesicular glutamate transporters 1 and 2 at single axon terminals during postnatal development of mouse neocortex: a quantitative analysis with correlation coefficient. Eur J Neurosci 26:3054–3067

    Article  PubMed  Google Scholar 

  • Preuss TM, Coleman GQ (2002) Human-specific organization of primary visual cortex: alternating compartments of dense Cat-301 and calbindin immunoreactivity in layer 4A. Cereb Cortex 12:671–691

    Article  PubMed  Google Scholar 

  • Preuss TM, Qi H, Kaas JH (1999) Distinctive compartmental organization of human primary visual cortex. Proc Natl Acad Sci USA 96:11601–11606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rasband W 1997–2012 (Image J, US National Institutes of Health, Bethesda, Maryland, USA). http://imagej.nih.gob/ij/

  • Solomon SG, Peirce JW, Lennie P (2004) The impact of suppressive surrounds on chromatic properties of cortical neurons. J Neurosci 24:148–160

    Article  CAS  PubMed  Google Scholar 

  • Talbot SM, Marshall WH (1941) Physiological studies on neural mechanisms of localization and discrimination. Am J Ophthalmol 24:1255–1264

    Article  Google Scholar 

  • Tootell RB, Silverman MS, Switkes E, De Valois RL (1982) Deoxyglucose analysis of retinotopic organization in primate striate cortex. Science 218:902–904

    Article  CAS  PubMed  Google Scholar 

  • Van Essen DC, Newsome WT, Maunsell JH (1984) The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res 24:429–448

    Article  PubMed  Google Scholar 

  • Varoqui H, Schafer MK, Zhu H, Weihe E, Erickson JD (2002) Identification of the differentiation-associated Na +/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 22:142–155

    CAS  PubMed  Google Scholar 

  • Wikler KC, Rakic P (1990) Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. J Neurosci 10:3390–3401

    CAS  PubMed  Google Scholar 

  • Williams DR, MacLeod DI, Hayhoe MM (1981a) Foveal tritanopia. Vision Res 21:1341–1356

    Article  CAS  PubMed  Google Scholar 

  • Williams DR, MacLeod DI, Hayhoe MM (1981b) Punctate sensitivity of the blue-sensitive mechanism. Vision Res 21:1357–1375

    Article  CAS  PubMed  Google Scholar 

  • Willmer E (1944) Colour of small objects. Nature 153:774–776

    Article  Google Scholar 

  • Xing D, Ringach DL, Shapley R, Hawken MJ (2004) Correlation of local and global orientation and spatial frequency tuning in macaque V1. J Physiol 557:923–933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshioka T, Hendry SH (1995) Compartmental organization of layer IVA in human primary visual cortex. J Comp Neurol 359:213–220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants EY17945 and P30EY013079. V.G-M was supported by the Spanish Ministry of Education, Science and Innovation (National R&D&I Plan 2008–2011, National Human Resources Mobility Programme, Postdoctoral Mobility in Foreign Centers, grant EX2009-0636). We thank Jenna Kelly for helpful suggestions and Claudia Farb, Yasmeen Afzal, and Tunazzina Ahmed for their technical support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Hawken.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1: High magnification images from 4Cα and 4Cβ at the foveal and perifoveal representations. Note that there is no qualitative difference in the density of VGlut2-ir puncta in layer 4C at the foveal and perifoveal representations whereas layer 4A has a marked reduction of puncta density at the same foveal representation (Fig. 2). Scale bar: 20 µm.

Supplementary material 1 (TIFF 14297 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Marin, V., Sundiang, M. & Hawken, M.J. Reduced density of geniculocortical terminals in foveal layer 4A in the macaque primary visual cortex: relationship to S-cone density. Brain Struct Funct 220, 2783–2796 (2015). https://doi.org/10.1007/s00429-014-0826-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0826-5

Keywords

Navigation