Skip to main content

A review of the mechanisms by which attentional feedback shapes visual selectivity

Abstract

The glut of information available for the brain to process at any given moment necessitates an efficient attentional system that can ‘pick and choose’ what information receives prioritized processing. A growing body of work, spanning numerous methodologies and species, reveals that one powerful way in which attending to an item separates the wheat from the chaff is by altering a basic response property in the brain: neuronal selectivity. Selectivity is a cornerstone response property, largely dictating our ability to represent and interact with the environment. Although it is likely that selectivity is altered throughout many brain areas, here we focus on how directing attention to an item affects selectivity in the visual system, where this response property is generally more well characterized. First, we review the neural architecture supporting selectivity, and then discuss the various changes that could occur in selectivity for an attended item. In a survey of the literature, spanning neurophysiology, neuroimaging and psychophysics, we reveal that there is general convergence regarding the manner with which selectivity is shaped by attentional feedback. In a nutshell, the literature suggests that the type of changes in selectivity that manifest appears to depend on the type of attention being deployed: whereas directing spatial attention towards an item only alters spatial selectivity, directing feature-based attention can alter the selectivity of attended features.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abbott LF, Dayan P (1999) The effect of correlated variability on the accuracy of a population code. Neural Comput 11:91–101. doi:10.1038/370140a0

    Article  CAS  PubMed  Google Scholar 

  • Anderson JS, Carandini M, Ferster D (2000a) Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J Neurophysiol 84:909–926

    CAS  PubMed  Google Scholar 

  • Anderson JS, Lampl I, Gillespie DC, Ferster D (2000b) The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science (New York, NY) 290:1968–1972

    Article  CAS  Google Scholar 

  • Anderson DE, Ester EF, Serences JT (2013) Attending multiple items decreases the selectivity of population responses in human primary visual cortex. J Neurosci 33(22):9273–9282

  • Averbeck BB, Latham PE, Pouget A (2006) Neural correlations, population coding and computation. Nat Rev Neurosci 7:358–366. doi:10.1038/nrn1888

    Article  CAS  PubMed  Google Scholar 

  • Baldassi S, Verghese P (2005) Attention to locations and features: different top-down modulation of detector weights. J Vis 5:556–570

    Article  PubMed  Google Scholar 

  • Bejjanki VR, Beck JM, Lu ZL, Pouget A (2011) Perceptual learning as improved probabilistic inference in early sensory areas. Nat Neurosci 14:642–648

  • Bhatt R, Carpenter G, Grossberg S (2007) Texture segregation by visual cortex: perceptual grouping, attention, and learning. Vis Res 47:3173–3211

    Article  PubMed  Google Scholar 

  • Blake R, Holopigian K (1985) Orientation selectivity in cats and humans assessed by masking. Vis Res 25(10):1459–1467

  • Blakemore C, Campbell FW (1969) On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol 203:237–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boehler CN, Luck SJ, Tsotsos JK (2006) Direct neurophysiological evidence for spatial suppression surrounding the focus of attention in vision. Proc Natl Acad Sci USA 103(4):1053–1058

  • Briggs F, Mangun GR, Usrey WM (2013) Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits. Nature 499:476–480. doi:10.1038/nature12276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buracas GT, Boynton GM (2007) The effect of spatial attention on contrast response functions in human visual cortex. J Neurosci: Off J Soc Neurosci 27:93–97

    Article  CAS  Google Scholar 

  • Busse L, Treue S (2008) Effects of attention on perceptual direction tuning curves in the human visual system. J Vis 8:1–13. doi:10.1167/8.9.2.Introduction

    Article  PubMed  Google Scholar 

  • Busse L, Roberts KC, Crist RE et al (2005) The spread of attention across modalities and space in a multisensory object. Proc Natl Acad Sci USA 102:18751–18756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carrasco M, Ling S, Read S (2004) Attention alters appearance. Nat Neurosci 7:308–313

  • Carrasco M, Loula F, Ho Y-X (2006) How attention enhances spatial resolution: Evidence from selective adaptation to spatial frequency. Percept Psychophys 68:1004–1012. doi:10.3758/BF03193361

    Article  PubMed  Google Scholar 

  • Chen Y, Seidemann E (2012) Attentional modulations related to spatial gating but not to allocation of limited resources in primate V1. Neuron 74:557–566. doi:10.1016/j.neuron.2012.03.033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chung S, Ferster D (1998) Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression. Neuron 20:1177–1189

    Article  CAS  PubMed  Google Scholar 

  • Cohen MR, Maunsell JHR (2009) Attention improves performance primarily by reducing interneuronal correlations. Nat Neurosci 12:1594–1600. doi:10.1038/nn.2439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Connor CE, Gallant JL, Preddie DC, van Essen DC (1996) Responses in area V4 depend on the spatial relationship between stimulus and attention. J Neurophysiol 75:1306–1308

    CAS  PubMed  Google Scholar 

  • Connor CE, Preddie DC, Gallant JL, van Essen DC (1997) Spatial attention effects in macaque area V4. J Neurosci: Off J Soc Neurosci 17:3201–3214

    CAS  Google Scholar 

  • Cutzu F, Tsotsos JK (2003) The selective tuning model of attention: psychophysical evidence for a suppressive annulus around an attended item. Vis Res 43(2):205–219

  • David SV, Hayden BY, Mazer JA, Gallant JL (2008) Attention to stimulus features shifts spectral tuning of V4 neurons during natural vision. Neuron 59:509–521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dragoi V, Sharma J, Sur M (2000) Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron 28:287–298

    Article  CAS  PubMed  Google Scholar 

  • Eckstein MP, Ahumada AJ (2002) Classification images: a tool to analyze visual strategies. J Vis 2(1):1x

  • Eckstein MP, Pham BT, Shimozaki SS (2004) The footprints of visual attention during search with 100 % valid and 100 % invalid cues. Vis Res 44:1193–1207

    Article  PubMed  Google Scholar 

  • Ferster D, Miller KD (2000) Neural mechanisms of orientation selectivity in the visual cortex. Annu Rev Neurosci 23:441–471

    Article  CAS  PubMed  Google Scholar 

  • Finn IM, Priebe NJ, Ferster D (2007) The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex. Neuron 54:137–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fischer J, Whitney D (2009) Attention narrows position tuning of population responses in V1. Curr Biol: CB 19:1356–1361. doi:10.1016/j.cub.2009.06.059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Golla H, Ignashchenkova A, Haarmeier T, Thier P (2004) Improvement of visual acuity by spatial cueing: a comparative study in human and non-human primates. Vis Res 44(13):1589–1600

  • Grill-Spector K (2003) The neural basis of object perception. Curr Opin Neurobiol 13:159–166

    Article  CAS  PubMed  Google Scholar 

  • Hara Y, Pestilli F, Gardner JL (2014) Differing effects of attention in single-units and populations are well predicted by heterogeneous tuning and the normalization model of attention. Front Comput Neurosci 8:12

  • Hegdé J (2009) How reliable is the pattern adaptation technique? A modeling study. J Neurophysiol 102:2245

    Article  PubMed  Google Scholar 

  • Herrmann K, Montaser-Kouhsari L, Carrasco M, Heeger DJ (2010) When size matters: attention affects performance by contrast or response gain. Nat Neurosci 13:1554–1559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hopf JM, Mangun GR (2000) Shifting visual attention in space: an electrophysiological analysis using high spatial resolution mapping. Clin Neurophysiol 111(7):1241–1257

  • Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat’s striate cortex. J Physiol 148(3):574–591

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jehee JFM, Brady DK, Tong F (2011) Attention improves encoding of task-relevant features in the human visual cortex. J Neurosci: Off J Soc Neurosci 31:8210–8219. doi:10.1523/JNEUROSCI.6153-09.2011

    Article  CAS  Google Scholar 

  • Jha AP, Hopf JM, Girelli M, Mangun GR (2000) Electrophysiological and neuroimaging studies of voluntary and reflexive attention. In: Monsell S, Driver J (eds) Control of cognitive processes: attention & performance, vol XVIII. The MIT Press, Cambridge, MA, pp 125–153

  • Jin J, Wang Y, Swadlow HA, Alonso JM (2011) Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex. Nat Neurosci 14:232–238. doi:10.1038/nn.2729

    Article  CAS  PubMed  Google Scholar 

  • Kamitani Y, Tong F (2005) Decoding the visual and subjective contents of the human brain. Nat Neurosci 8:679–685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanwisher N, McDermott J, Chun MM (1997a) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci: Off J Soc Neurosci 17:4302–4311

    CAS  Google Scholar 

  • Kanwisher N, Woods RP, Iacoboni M, Mazziotta JC (1997b) A locus in human extrastriate cortex for visual shape analysis. J Cogn Neurosci 9:133–142

    Article  CAS  PubMed  Google Scholar 

  • Kohn A, Movshon JA (2003) Neuronal adaptation to visual motion in area MT of the macaque. Neuron 39(4):681–691

  • Kohn A, Movshon JA (2004) Adaptation changes the direction tuning of macaque MT neurons. Nat Neurosci 7:764–772

    Article  CAS  PubMed  Google Scholar 

  • Krekelberg B, Boynton GM, Van Wezel RJ (2006) Adaptation: from single cells to BOLD signals. Trends Neurosci 29:250–256

    Article  CAS  PubMed  Google Scholar 

  • Lee DK, Itti L, Koch C, Braun J (1999) Attention activates winner-take-all competition among visual filters. Nat Neurosci 2:375–381

    Article  CAS  PubMed  Google Scholar 

  • Legge GE, Foley JM (1980) Contrast masking in human vision. J Opt Soc Am 70:1458–1471

    Article  CAS  PubMed  Google Scholar 

  • Ling S, Blake R (2012) Normalization regulates competition for visual awareness. Neuron 75:533–542

    Article  Google Scholar 

  • Ling, S, Carrasco M (2007) Transient covert attention does alter appearance: a reply to Schneider (2006). Percept Psychophys 69(6):1051–1058

    Article  PubMed Central  PubMed  Google Scholar 

  • Ling S, Liu T, Carrasco M (2009a) How spatial and feature-based attention affect the gain and tuning of population responses. Vis Res 49:1194–1204. doi:10.1016/j.visres.2008.05.025

    Article  PubMed Central  PubMed  Google Scholar 

  • Ling S, Pearson J, Blake R (2009b) Dissociation of neural mechanisms underlying orientation processing in humans. Curr Biol 19(17):1458–1462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu T, Mance I (2011) Constant spread of feature-based attention across the visual field. Vis Res 51(1):26–33

  • Liu T, Larsson J, Carrasco M (2007) Feature-based attention modulates orientation-selective responses in human visual cortex. Neuron 55:313–323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu T, Hospadaruk L, Zhu DC, Gardner JL (2011) Feature-specific attentional priority signals in human cortex. J Neurosci: Off J Soc Neurosci 31:4484–4495

    Article  CAS  Google Scholar 

  • Lu ZL, Dosher BA (2004) Spatial attention excludes external noise without changing the spatial frequency tuning of the perceptual template. J Vis 4(10):955–966

  • Luck SJ, Girelli M, Hagner T, Mangun GR (2000) Neural sources of focused attention in visual search. Cerebral Cortex 10(12):1233–1241

  • Majaj NJ, Pelli DG, Kurshan P, Palomares M (2002) The role of spatial frequency channels in letter identification. Vis Res 42(9):1165–1684

  • Malach R, Reppas JB, Benson RR et al (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci 92:8135–8139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mangun GR, Hillyard SA (1988) Spatial gradients of visual attention: behavioral and electrophysiological evidence. Electroencephalogr Clin Neurophysiol 70:417–428

    Article  CAS  PubMed  Google Scholar 

  • Maunsell J, Treue S (2006) Feature-based attention in visual cortex. Trends Neurosci 29(6):317–322

  • McAdams CJ, Maunsell JH (1999) Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J Neurosci: Off J Soc Neurosci 19:431–441

    CAS  Google Scholar 

  • McAlonan K, Cavanaugh J, Wurtz RH (2008) Guarding the gateway to cortex with attention in visual thalamus. Nature 456(7220):391–394

  • McLaughlin D, Shapley R, Shelley M, Wielaard DJ (2000) A neuronal network model of macaque primary visual cortex (V1): orientation selectivity and dynamics in the input layer 4Cα. Proc Natl Acad Sci USA 97:8087–8092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitchell JF, Sundberg KA, Reynolds JH (2009) Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63:879–888. doi:10.1016/j.neuron.2009.09.013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Müller NG, Mollenhauer M, Rösler A, Kleinschmidt A (2005) The attentional field has a Mexican hat distribution. Vision research 45(9):1129–1137

  • Murray SO (2008) The effects of spatial attention in early human visual cortex are stimulus independent. J Vis 8(2):1–11

    Article  Google Scholar 

  • Murray SO, Wojciulik E (2004) Attention increases neural selectivity in the human lateral occipital complex. Nat Neurosci 7:70–74. doi:10.1038/nn1161

    Article  CAS  PubMed  Google Scholar 

  • Neri P (2004) Attentional effects on sensory tuning for single-feature detection and double-feature conjunction. Vis Res 44:3053–3064

    Article  PubMed  Google Scholar 

  • Niebergall R, Khayat PS, Treue S, Martinez-Trujillo JC (2011) Multifocal attention filters targets from distracters within and beyond primate MT neurons’ receptive field boundaries. Neuron 72:1067–1079

    Article  CAS  PubMed  Google Scholar 

  • O’Connor DH, Fukui MM, Pinsk MA, Kastner S (2002) Attention modulates responses in the human lateral geniculate nucleus. Nat Neurosci 5(11):1203–1209

  • Paltoglou AE, Neri P (2011) Attentional control of sensory tuning in human visual perception. J Neurophysiol. doi:10.1152/jn.00776.2011

    PubMed Central  PubMed  Google Scholar 

  • Paltoglou AE, Neri P (2012) Attentional control of sensory tuning in human visual perception. J Neurophysiol 107:1260–1274

    Article  PubMed Central  PubMed  Google Scholar 

  • Pestilli F, Carrasco M, Heeger DJ, Gardner JL (2011) Attentional enhancement via selection and pooling of early sensory responses in human visual cortex. Neuron 72:832–846. doi:10.1016/j.neuron.2011.09.025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Priebe NJ, Ferster D (2006) Mechanisms underlying cross-orientation suppression in cat visual cortex. Nat Neurosci 9:552–561

    Article  CAS  PubMed  Google Scholar 

  • Prinzmetal W, Long V, Leonhardt J (2008) Involuntary attention and brightness contrast. Percept Psychophys 70:1139–1150. doi:10.3758/PP.70.7.1139

    Article  PubMed  Google Scholar 

  • Pugh MC, Ringach DL, Shapley R, Shelley MJ (2000) Computational modeling of orientation tuning dynamics in monkey primary visual cortex. J Comput Neurosci 8:143–159. doi:10.1023/A:1008921231855

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JH, Heeger DJ (2009) The normalization model of attention. Neuron 61:168–185. doi:10.1016/j.neuron.2009.01.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ringach DL, Hawken MJ, Shapley R (1997) Dynamics of orientation tuning in macaque primary visual cortex. Nature 387:281–284

    Article  CAS  PubMed  Google Scholar 

  • Saenz M, Buracas GT, Boynton GM (2002) Global effects of feature-based attention in human visual cortex. Nat Neurosci 5:631–632. doi:10.1038/nn876

    Article  CAS  PubMed  Google Scholar 

  • Sàenz M, Buraĉas GT, Boynton GM (2003) Global feature-based attention for motion and color. Vis Res 43(6):629–637

  • Saproo S, Serences JT (2010) Spatial attention improves the quality of population codes in human visual cortex. J Neurophysiol 104:885–895

    Article  PubMed Central  PubMed  Google Scholar 

  • Schneider KA, Komlos M (2008) Attention biases decisions but does not alter appearance. J Vis 8(3):1–10

    Article  Google Scholar 

  • Schwartz O, Hsu A, Dayan P (2007) Space and time in visual context. Nat Rev Neurosci 8:522–535. doi:10.1038/nrn2155

    Article  CAS  PubMed  Google Scholar 

  • Sclar G, Freeman RD (1982) Orientation selectivity in the cat’s striate cortex is invariant with stimulus contrast. Exp Brain Res Experimentelle Hirnforschung Expérimentation cérébrale 46:457–461

    Article  CAS  Google Scholar 

  • Scolari M, Serences JT (2009) Adaptive allocation of attentional gain. J Neurosci: Off J Soc Neurosci 29:11933–11942. doi:10.1523/JNEUROSCI.5642-08.2009

    Article  CAS  Google Scholar 

  • Scolari M, Serences JT (2010) Basing perceptual decisions on the most informative sensory neurons. J Neurophysiol 104:2266–2273. doi:10.1152/jn.00273.2010

    Article  PubMed Central  PubMed  Google Scholar 

  • Serences JT, Boynton GM (2007) Feature-based attentional modulations in the absence of direct visual stimulation. Neuron 55:301–312. doi:10.1016/j.neuron.2007.06.015

    Article  CAS  PubMed  Google Scholar 

  • Serences JT, Saproo S, Scolari M et al (2009a) Estimating the influence of attention on population codes in human visual cortex using voxel-based tuning functions. NeuroImage 44:223–231

    Article  PubMed  Google Scholar 

  • Serences JT, Saproo S, Scolari M et al (2009b) Estimating the influence of attention on population codes in human visual cortex using voxel-based tuning functions. NeuroImage 44:223–231. doi:10.1016/j.neuroimage.2008.07.043

    Article  PubMed  Google Scholar 

  • Seriès P, Latham PE, Pouget A (2004) Tuning curve sharpening for orientation selectivity: coding efficiency and the impact of correlations. Nat Neurosci 7:1129–1135

    Article  PubMed  Google Scholar 

  • Shalev L, Tsal Y (2002) Detecting gaps with and without attention: Further evidence for attentional receptive fields. Eur J Cogn Psychol 14(1):3–26

  • Shamir M, Sompolinsky H (2004) Nonlinear population codes. Neural Comput 16:1105–1136. doi:10.1038/370140a0

    Article  PubMed  Google Scholar 

  • Shiu LP, Pashler H (1992) Improvement in line orientation discrimination is retinally local but dependent on cognitive set. Percept Psychophys 52(5):582–588

  • Solomon JA, Pelli DG (1994) The visual filter mediating letter identification. Nature 369:395–397

  • Sompolinsky H, Shapley R (1997) New perspectives on the mechanisms for orientation selectivity. Curr Opin Neurobiol 7:514–522

    Article  CAS  PubMed  Google Scholar 

  • Spitzer H, Desimone R, Moran J (1988) Increased attention enhances both behavioral and neuronal performance. Science (New York, NY) 240:338–340

    Article  CAS  Google Scholar 

  • Talgar CP, Pelli DG, Carrasco M (2004) Covert attention enhances letter identification without affecting channel tuning. J Vis 4:3. doi:10.1167/4.1.3

    Article  Google Scholar 

  • Tombu M, Tsotsos JK (2008) Attending to orientation results in an inhibitory surround in orientation space. Percept Psychophys 70:30–35

    Article  PubMed  Google Scholar 

  • Tootell RB, Hadjikhani NK, Vanduffel W et al (1998) Functional analysis of primary visual cortex (V1) in humans. Proc Natl Acad Sci USA 95:811–817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Treue S, Martínez Trujillo JC (1999) Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399:575–579. doi:10.1038/21176

    Article  CAS  PubMed  Google Scholar 

  • Valsecchi M, Vescovi M, Turatto M (2010) Are the effects of attention on speed judgments genuinely perceptual? Atten Percept Psychophys 72:637–650. doi:10.3758/APP.72.3.637

    Article  PubMed  Google Scholar 

  • Verghese P, Kim Y-J, Wade AR (2012) Attention selects informative neural populations in human V1. J Neurosci: Off J Soc Neurosci 32:16379–16390

    Article  CAS  Google Scholar 

  • Webster MA, Stanley GB, Stocker AA, Kohn A (2007) Visual adaptation: neural, psychological and computational aspects. Vis Res 47(25):3125–3131

  • Womelsdorf T, Anton-Erxleben K, Treue S (2008) Receptive field shift and shrinkage in macaque middle temporal area through attentional gain modulation. J Neurosci: Off J Soc Neurosci 28:8934–8944

    Article  CAS  Google Scholar 

  • Wyart V, Nobre AC (2012) Dissociable prior influences of signal probability and relevance on visual contrast sensitivity. Proc Natl Acad Sci USA 109(9):3593–3598

  • Yeshurun Y, Carrasco M (1998) Attention improves or impairs visual performance by enhancing spatial resolution. Nature 396:72–75

  • Yeshurun Y, Montagna B, Carrasco M (2008) On the flexibility of sustained attention and its effects on a texture segmentation task. Vis Res 48:80–95

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Randolph Blake, Brian Wandell, Vincent Ferrera and Frank Tong for generous support and advice, and Hiromasa Takemura, Jocelyn Sy, and Rosemary Le for comments on early drafts of the manuscript. This work was supported by EU FP7-PEOPLE-2009-RG Grant 256456 to Janneke Jehee, by training grants awarded by The Italian Academy for Advanced Studies in America, Columbia University, the National Institute of Mental Health (T32-MH05174) and National Eye Institute (T32-EY1393309) to Franco Pestilli, and by a research grant awarded by the National Science Foundation (BCS1228397) to Brian Wandell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Ling.

Additional information

All authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ling, S., Jehee, J.F.M. & Pestilli, F. A review of the mechanisms by which attentional feedback shapes visual selectivity. Brain Struct Funct 220, 1237–1250 (2015). https://doi.org/10.1007/s00429-014-0818-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0818-5

Keywords

  • Neuroimaging
  • Attention
  • Psychophysics
  • Visual system
  • Electrophysiology
  • Orientation
  • Motion