Advertisement

Brain Structure and Function

, Volume 220, Issue 4, pp 2441–2448 | Cite as

Behavioral and neurophysiological evidence for the enhancement of cognitive control under dorsal pallidal deep brain stimulation in Huntington’s disease

  • Christian BesteEmail author
  • Moritz Mückschel
  • Saskia Elben
  • Christian J Hartmann
  • Cameron C McIntyre
  • Carsten Saft
  • Jan Vesper
  • Alfons Schnitzler
  • Lars WojteckiEmail author
Original Article

Abstract

Deep brain stimulation of the dorsal pallidum (globus pallidus, GP) is increasingly considered as a surgical therapeutic option in Huntington’s disease (HD), but there is need to identify outcome measures useful for clinical trials. Computational models consider the GP to be part of a basal ganglia network involved in cognitive processes related to the control of actions. We examined behavioural and event-related potential (ERP) correlates of action control (i.e., error monitoring) and evaluated the effects of deep brain stimulation (DBS). We did this using a standard flanker paradigm and evaluated error-related ERPs. Patients were recruited from a prospective pilot trial for pallidal DBS in HD (trial number NCT00902889). From the initial four patients with Huntington’s chorea, two patients with chronic external dorsal pallidum stimulation were available for follow-up and able to perform the task. The results suggest that the external GP constitutes an important basal ganglia element not only for error processing and behavioural adaptation but for general response monitoring processes as well. Response monitoring functions were fully controllable by switching pallidal DBS stimulation on and off. When stimulation was switched off, no neurophysiological and behavioural signs of error and general performance monitoring, as reflected by the error-related negativity and post-error slowing in reaction times were evident. The modulation of response monitoring processes by GP-DBS reflects a side effect of efforts to alleviate motor symptoms in HD. From a clinical neurological perspective, the results suggest that DBS in the external GP segment can be regarded as a potentially beneficial treatment with respect to cognitive functions.

Keywords

Deep brain stimulation Cognitive enhancement Huntington Response monitoring EEG Globus pallidus 

Notes

Acknowledgments

This work was supported by a Grant from the Deutsche Forschungsgemeinschaft (DFG) BE4045/10-1. The initial clinical trial was supported with a seed funding by the European Huntington´s Disease Network (EHDN). We thank the patients for their cooperation.

References

  1. Beste C, Saft C, Andrich J, Gold R, Falkenstein M (2006) Error processing in Huntington’s disease. PloS One 1:e86PubMedCentralPubMedCrossRefGoogle Scholar
  2. Beste C, Saft C, Yordanova J, Andrich J, Gold R, Falkenstein M, Kolev V (2007) Functional compensation of pathology in cortico-subcortical interactions in preclinical Huntington’s disease. Neuropsychologia 45:2922–2930PubMedCrossRefGoogle Scholar
  3. Beste C, Saft C, Konrad C, Andrich J, Habbel A, Schepers I, Jansen A, Pfleiderer B, Falkenstein M (2008) Levels of error processing in Huntington’s disease: a combined study using event-related potentials and voxel-based morphometry. Hum Brain Mapp 29:121–130PubMedCrossRefGoogle Scholar
  4. Beste C, Domschke K, Kolev V, Yordanova J, Baffa A, Falkenstein M, Konrad C (2010) Functional 5-HT1a receptor polymorphism selectively modulates error-specific subprocesses of performance monitoring. Hum Brain Mapp 31:621–630PubMedGoogle Scholar
  5. Biolsi B, Cif L, Fertit H, Robles SG, Coubes P (2008) Long-term follow-up of Huntington disease treated by bilateral deep brain stimulation of the internal globus pallidus. J Neurosurg 109:130–132PubMedCrossRefGoogle Scholar
  6. Coles MG, Scheffers MK, Holroyd CB (2001) Why is there an ERN/Ne on correct trials? response representations, stimulus-related components, and the theory of error-processing. Biol Psychol 56:173–189PubMedCrossRefGoogle Scholar
  7. Crawford JR, Garthwaite PH (2012) Singe-case research in neuropsychology: a comparison of five forms of t-test for comparing a case to controls. Cortex 48:1009–1016PubMedCrossRefGoogle Scholar
  8. Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK (2005) Trial-by- trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25:11730–11737PubMedCrossRefGoogle Scholar
  9. Demeestere J, Vandenberghe W (2011) Experimental surgical therapies for Huntington’s disease. CNS Neurosci Ther 17:705–713PubMedCrossRefGoogle Scholar
  10. Falkenstein M, Hohnsbein J, Hoormann J, Blanke L (1991) Effects of crossmodal divided attention on late ERP components. II. error processing in choice reaction tasks. Electroencephalogr Clin Neurophysiol 78:447–455PubMedCrossRefGoogle Scholar
  11. Fasano A, Mazzone P, Piano C, Quaranta D, Soleti F, Bentivolglio AR (2008) GPi-DBS in Huntington’s disease: results on motor function and cognition in a 72-year-old case. Mov Disord 23:1289–1292PubMedCrossRefGoogle Scholar
  12. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward SR, Miller V, Pieper S, Kikinis R (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 309:1323–1341CrossRefGoogle Scholar
  13. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355PubMedCrossRefGoogle Scholar
  14. Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E (1993) A neural system for error detection and compensation. Psychol Sci 4:385–390CrossRefGoogle Scholar
  15. Groiss SJ, Elben S, Reck C, Voges J, Wojtecki L, Schnitzler A (2011) Local field potential oscillations of the globus pallidus in Huntington’s disease. Mov Disord 26:2577–2578PubMedCrossRefGoogle Scholar
  16. Hemm S, Coste J, Gabrillargues J, Ouchchane L, Sarry L, Caire F, Vassal F, Nuti C, Derost P, Durif F, Lemaire J–J (2009) Contact position analysis of deep brain stimulation electrodes on post-operative CT images. Acta Neurochir (Wien) 151:823–829CrossRefGoogle Scholar
  17. Hoffmann S, Falkenstein M (2010) Independent component analysis of erroneous and correct responses suggests online response control. Hum Brain Mapp 31:1305–1315PubMedCrossRefGoogle Scholar
  18. Holroyd CB, Coles MG (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109:679–709PubMedCrossRefGoogle Scholar
  19. Humphries MD, Stewart RD, Gurney KN (2006) A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci 26:12921–12942PubMedCrossRefGoogle Scholar
  20. Huys D, Bartsch C, Poppe P, Lenartz D, Huff W, Prütting J, Timmermann L, Klosterkötter J, Maarouf M, Rommel T, Hartmann A, Sturm V, Kuhn J (2013) Management and outcome of pallidal deep brain stimulation in severe Huntington’s disease. Fortschr Neurol Psychiatry 81:202–205CrossRefGoogle Scholar
  21. Jürgens CK, van de Wiel L, van Es AC, Grimbergen YM, Witjes-Ane MN, van der Grond HA, Roos RA (2008) Basal ganglia volume and clinical correlates in preclinical Huntington’s disease. J Neurol 255:1785–1791PubMedCrossRefGoogle Scholar
  22. Kang GA, Heath S, Rothlind J, Starr PA (2011) Long-term follow-up of pallidal deep brain stimulation in two cases of Huntington’s disease. J Neurol Neurosurg Psychiatry 82:272–277PubMedCrossRefGoogle Scholar
  23. Miocinovic S, Noecker AM, Maks CB, Butson CR, McIntyre CC (2007) Cicerone: stereotactic neurophysiological recording and deep brain stimulation electrode placement software system. Acta Neurochir Suppl 97:561–567CrossRefGoogle Scholar
  24. Moro E, Lang AE, Strafella AP, Poon YY, Arango PM, Dagher A, Hutchison WD, Lozano AM (2004) Bilateral globus pallidus stimulation for Huntington’s disease. Ann Neurol 56:290–294PubMedCrossRefGoogle Scholar
  25. Nguyen L, Bradshaw JL, Stout JC, Croft RJ, Georgiou-Karistianis N (2010) Electrophysiological measures as potential biomarkers in Huntington’s disease: review and future directions. Brain Res Rev 64:177–194PubMedCrossRefGoogle Scholar
  26. Nunez PL, Pilgreen KL (1991) The spline-laplacian in clinical neurophysiology: a method to improve EEG spatial resolution. J Clin Neurophysiol 8:397–413PubMedCrossRefGoogle Scholar
  27. Politis M, Pavese N, Tai YF, Kiferle L, Mason SL, Brooks DJ, Tabrizi SJ, Barker RA, Piccini P (2011) Microglial activation in regions related to cognitive function predicts disease onset in Huntington’s disease: a multimodal imaging study. Hum Brain Mapp 32:258–270PubMedCrossRefGoogle Scholar
  28. Siegert S, Herrojo Ruiz M, Brücke C, Huebl J, Schneider G-H, Ullsperger M, Kühn AA (2014) Error signals in the subthalamic nucleus are related to post-error slowing in patients with Parkinson’s disease. Cortex. doi: 10.1016/j.cortex.2013.12.008 PubMedGoogle Scholar
  29. Smith MA, Brandt J, Shadmehr R (2000) Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature 403:544–549PubMedCentralPubMedCrossRefGoogle Scholar
  30. Spielberger S, Hotter A, Wolf E, Eisner W, Müller J, Poewe W, Seppi K (2012) Deep brain stimulation in Huntington’s disease: a 4-year follow-up case report. Mov Disord 27:806–807PubMedCrossRefGoogle Scholar
  31. Temel Y, Cao C, Vlamings R, Blokland A, Ozen H, Steinbusch HWM, Michelsen KA, von Hörsten S, Schmitz C, Visser-Vandewalle V (2006) Motor and cognitive improvement by deep brain stimulation in a transgenic rat model of Huntington’s disease. Neurosci Lett 406:138–141PubMedCrossRefGoogle Scholar
  32. Vidal F, Hasbroucq T, Grapperon J, Bonnet M (2000) Is the error negativity specific to errors? Biol Psychol 51:109–128PubMedCrossRefGoogle Scholar
  33. Yordanova J, Falkenstein M, Hohnsbein J, Kolev V (2004) Parallel systems of error processing in the brain. Neuroimage 22:590–602PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Christian Beste
    • 1
    Email author
  • Moritz Mückschel
    • 1
  • Saskia Elben
    • 2
    • 3
  • Christian J Hartmann
    • 2
    • 3
  • Cameron C McIntyre
    • 4
  • Carsten Saft
    • 5
  • Jan Vesper
    • 6
  • Alfons Schnitzler
    • 2
    • 3
  • Lars Wojtecki
    • 2
    • 3
    Email author
  1. 1.Cognitive Neurophysiology, Department of Child and Adolescent PsychiatryFaculty of Medicine of the TU DresdenDresdenGermany
  2. 2.Movement Disorders and Neuromodulation, Department of Neurology, Medical FacultyHeinrich-Heine University DüsseldorfDüsseldorfGermany
  3. 3.Medical Faculty, Institute of Clinical Neuroscience and Medical PsychologyHeinrich-Heine University DüsseldorfDüsseldorfGermany
  4. 4.Department of Biomedical EngineeringCase Western Reserve UniversityClevelandUSA
  5. 5.Department of NeurologySt. Josef Hospital, Ruhr-Universität BochumBochumGermany
  6. 6.Stereotaxy and Functional Neurosurgery, Department of Neurosurgery, Medical FacultyHeinrich-Heine University DüsseldorfDüsseldorfGermany

Personalised recommendations