Skip to main content
Log in

An analysis of von Economo neurons in the cerebral cortex of cetaceans, artiodactyls, and perissodactyls

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Von Economo neurons (VENs) are specialized projection neurons with a characteristic spindle-shaped soma and thick basal and apical dendrites. VENs have been described in restricted cortical regions, with their most frequent appearance in layers III and V of the anterior cingulate cortex, anterior insula, and frontopolar cortex of humans, great apes, macaque monkeys, elephants, and some cetaceans. Recently, a ubiquitous distribution of VENs was reported in various cortical areas in the pygmy hippopotamus, one of the closest living relatives of cetaceans. That finding suggested that VENs might not be unique to only a few species that possess enlarged brains. In the present analysis, we assessed the phylogenetic distribution of VENs within species representative of the superordinal clade that includes cetartiodactyls and perissodactyls, as well as afrotherians. In addition, the distribution of fork cells that are often found in close proximity to VENs was also assessed. Nissl-stained sections from the frontal pole, anterior cingulate cortex, anterior insula, and occipital pole of bowhead whale, cow, sheep, deer, horse, pig, rock hyrax, and human were examined using stereologic methods to quantify VENs and fork cells within layer V of all four cortical regions. VENs and fork cells were found in each of the species examined here with species-specific differences in distributions and densities. The present results demonstrated that VENs and fork cells were not restricted to highly encephalized or socially complex species, and their repeated emergence among distantly related species seems to represent convergent evolution of specialized pyramidal neurons. The widespread phylogenetic presence of VENs and fork cells indicates that these neuron morphologies readily emerged in response to selective forces,whose variety and nature are yet to be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allman J, Watson K, Tetreault N, Hakeem A (2005) Intuition and autism: a possible role for von Economo neurons. Trends Cogn Sci 9:367–373

    Article  PubMed  Google Scholar 

  • Allman JM, Tetreault NA, Hakeem AY, Manaye KF, Semendeferi K, Erwin JM, Park S, Goubert V, Hof PR (2010) The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Struct Funct 214:495–517

    Article  PubMed  Google Scholar 

  • Bauernfeind AL, de Sousa AA, Avasthi T, Dobson SD, Raghanti MA, Lewandowski AH, Zilles K, Semendeferi K, Allman JM, Craig AD, Hof PR, Sherwood CC (2013) A volumetric comparison of the insular cortex and its subregions in primates. J Hum Evol 64:263–279

    Article  PubMed  PubMed Central  Google Scholar 

  • Betz W (1881) Über die feinere Struktur der Gehirnrinde des Menschen. Centralbl Med Wiss 19(193–195):209–234

    Google Scholar 

  • Brüne M, Schobel A, JKarau R, Benali A, Faustmann PM, Juckel G, Petrasch-Parwez E (2010) Von Economo neuron density in the anterior cingulate cortex is reduced in early onset schizophrenia. Acta Neuropathol 119:771–778

    Article  PubMed  Google Scholar 

  • Brüne M, Schobel A, Karau R, Faustmann PM, Dermietzel R, Juckel G, Petrasch-Parwez E (2011) Neuroanatomical correlates of suicide in psychosis: the possible role of von Economo neurons. PLoS One 6:e20936

    Article  PubMed  PubMed Central  Google Scholar 

  • Butti C, Hof PR (2010) The insular cortex: a comparative perspective. Brain Struct Funct 214:477–493

    Article  PubMed  Google Scholar 

  • Butti C, Sherwood CC, Hakeem AY, Allman JM, Hof PR (2009) The number and volume of von Economo neurons in the cerebral cortex of cetaceans. J Comp Neurol 515:243–259

    Article  PubMed  Google Scholar 

  • Butti C, Raghanti MA, Sherwood CC, Hof PR (2011) The neocortex of cetaceans: cytoarchitecture and comparison with other aquatic and terrestrial species. Ann NY Acad Sci 1225:47–58

    Article  PubMed  Google Scholar 

  • Butti C, Santos M, Uppal N, Hof PR (2013) Von Economo neurons: clinical and evolutionary perspectives. Cortex 49:312–326

    Article  PubMed  Google Scholar 

  • Butti C, Fordyce RE, Raghanti MA, Gu X, Bonar CJ, Wicinski B, Wong EW, Roman J, Brake A, Eaves E, Tang CY, Jacobs B, Sherwood CC, Hof PR (2014) The cerebral cortex of the pygmy hippopotamus, Hexaprotodon liberiensis (Cetartiodactyla, Hippopotamidae). Anat Rec 297:670–700

  • Chow KL, Blum JS, Blum K (1950) Cell ratios in the thalamocortical visual system of Macaca mulatta. J Comp Neurol 92:227–239

    Article  CAS  PubMed  Google Scholar 

  • Cobos I, Seeley WW (2013) Human von Economo neurons express transcription factors associated with layer V subcerebral projection neurons. Cereb Cortex. doi:10.1093/cercor/bht219

    PubMed  Google Scholar 

  • Craig AD (2009) How do you feel now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70

    Article  CAS  PubMed  Google Scholar 

  • Evrard HC, Forro T, Logothetis NK (2012) Von Economo neurons in the anterior insula of the macaque monkey. Neuron 74:482–489

    Article  CAS  PubMed  Google Scholar 

  • Gatesy J, O’Leary MA (2001) Deciphering whale origins with molecules and fossils. Trends Ecol Evol 16:562–570

    Article  Google Scholar 

  • Hakeem AY, Sherwood CC, Bonar CJ, Butti C, Hof PR, Allman JM (2009) Von Economo neurons in the elephant brain. Anat Rec 292:242–248

    Article  Google Scholar 

  • Hans Thewissen JGM, Cooper LN, Clementz MT, Bajpai S, Tiwari BN (2007) Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450:1190–1195

    Article  Google Scholar 

  • Hans Thewissen JGM, George J, Rosa C, Kishida T (2011) Olfaction and brain size in the bowhead whale (Balaena mysticetus). Mar Mammal Sci 27:282–294

    Article  Google Scholar 

  • Hayashi M, Ito M, Shimizu K (2001) The spindle neurons are present in the cingulate cortex of chimpanzee fetus. Neurosci Lett 309:97–100

    Article  CAS  PubMed  Google Scholar 

  • Hof PR, Van der Gucht E (2007) Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anat Rec 290:1–31

    Article  Google Scholar 

  • Kaufman JA, Paul LK, Manaye KF, Granstedt AE, Hof PR, Hakeem AY, Allman JM (2008) Selective reduction of von Economo neuron number in agenesis of the corpus callosum. Acta Neuropathol 116:479–489

    Article  PubMed  Google Scholar 

  • Kennedy DP, Semendeferi K, Courchesne E (2007) No reduction of spindle neuron number in frontoinsular cortex in autism. Brain Cogn 64:124–129

    Article  PubMed  Google Scholar 

  • Kim EJ, Sidhu M, Macedo MN, Huang EJ, Hof PR, Miller BJ, DeArmond SJ, Seeley WW (2012) Frontoinsular von Economo neuron and fork cell loss in early behavioral variant frontotemporal dementia. Cereb Cortex 22:251–259

    Article  PubMed  PubMed Central  Google Scholar 

  • Manger PR (2006) An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain. Biol Rev 81:293–338

    Article  PubMed  Google Scholar 

  • Manger PR, Prowse M, Haagensen M, Hemingway J (2012) Quantitative analysis of neocortical gyrencephaly in African elephants (Loxodonta africana) and six species of cetaceans: comparisons with other mammals. J Comp Neurol 520:2430–2439

    Article  PubMed  Google Scholar 

  • Marx FG (2011) The more the merrier? A large cladistic analysis of mysticetes, and comments on the transition from teeth to baleen. J Mammal Evol 18:77–100

    Article  Google Scholar 

  • Ngowyang G (1932) Beschreibung einer Art von Spezialzellen in der Inselrinde - zugleich Bemerkungen über die v. Economoschen Spezialzellen. J Psychol Neurol 44:671–674

    Google Scholar 

  • Ngowyang G (1936) Neuere Befunde über die Gabelzellen. Cell Tissue Research 25:236–239

    Google Scholar 

  • Nikaido M, Hamilton H, Makino H, Sasaki T, Takahashi K, Goto M, HKanda N, Pastene LA, Okada N (2006) Baleen whale phylogeny and a past extensive radiation event revealed by SINE insertion analysis. Mol Biol Evol 23:866–873

    Article  CAS  PubMed  Google Scholar 

  • Nimchinsky EA, Vogt BA, Morrison JH, Hof PR (1995) Spindle neurons of the human anterior cingulate cortex. J Comp Neurol 355:27–37

    Article  CAS  PubMed  Google Scholar 

  • Nimchinsky EA, Gilissen E, Allman JM, Perl DP, Erwin JM, Hof PR (1999) A neuronal morphologic type unique to humans and great apes. Proc Natl Acad Sci USA 96(9):5268–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillay P, Manger PR (2007) Order-specific quantitative patterns of cortical gyrification. Eur J Neurosci 25:2705–2712

    Article  PubMed  Google Scholar 

  • Price SA, Bininda-Emonds ORP, Gittleman JL (2005) A complete phylogeny of the whales, dolphins and even-toed hoofed mammals (Cetartiodactyla). Biol Rev 80:445–473

    Article  PubMed  Google Scholar 

  • Raghanti MA, Spurlock LB, Uppal N, Sherwood CC, Butti C, Hof PR (2014) Von Economo neurons. In: Zilles K, Amunts K (eds) Brain Mapping: An Encyclopedic Reference. Elsevier, Amsterdam (in press)

  • Reep RL, O’Shea TJ (1990) Regional brain morphometry and lissencephaly in the Sirenia. Brain Behav Evol 35:185–194

    Article  CAS  PubMed  Google Scholar 

  • Ridgway SH, Brownson RH (1984) Relative brain sizes and cortical surface areas in odontocetes. Acta Zool Fenn 172:149–152

    Google Scholar 

  • Rogalski EJ, Gefen T, Shi J, Samimi M, Bigio E, Weintraub S, Geula C, Mesulam M-M (2013) Youthful memory capacity in old brains: anatomic and genetic clues from the Northwestern SuperAging Project. J Cogn Neurosci 25:29–36

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubes J, Musilova P, Kopecna O, Kubickova S, Cernohorska H, Kulemsina AI (2012) Comparative molecular cytogenetics in Cetartiodactyla. Cytogenet Genome Res 137:194–207

    Article  CAS  PubMed  Google Scholar 

  • Santos M, Uppal N, Butti C, Wicinski B, Schmeidler J, Giannakopoulos P, Heinsen H, Schmitz C, Hof PR (2011) von Economo neurons in autism: a stereologic study of the frontoinsular cortex in children. Brain Res 1380:206–217

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Nikaido M, Hamilton H, Goto M, Kato H, Kanda N, Pastene LA, Okada N (2005) Mitochondrial phylogenetics and evolution of mysticete whales. Syst Biol 54:77–90

    Article  PubMed  Google Scholar 

  • Seeley WW (2008) Selective functional, regional, and neuronal vulnerability in frontotemporal dementia. Curr Opin Neurol 21:701–707

    Article  PubMed  PubMed Central  Google Scholar 

  • Seeley WW, Carlin DA, Allman J, Macedo MN, Bush C, Miller BL, DeArmond SJ (2006) Early frontotemporal dementia targets neurons unique to apes and humans. Ann Neurol 60:660–667

    Article  PubMed  Google Scholar 

  • Seeley WW, Allman J, Carlin DA, Crawford RK, Macedo MN, Greicius MD, DeArmond SJ, Miller BL (2007) Divergent social functioning in behavioral variant frontotemporal dementia and Alzheimer disease: reciprocal connections and neuronal evolution. Alzheimer Dis Assoc Disord 21:S50–S57

    Article  PubMed  Google Scholar 

  • Seeley WW, Merkle FT, Gaus SE, Craig AD, Allman JM, Hof PR (2012) Distinctive neurons of the anterior cingulate and frontoinsular cortex: a historical perspective. Cereb Cortex 22:245–250

    Article  PubMed  Google Scholar 

  • Simms ML, Kemper TL, Timbie CM, Bauman ML, Blatt GJ (2009) The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathol 118:673–684

    Article  PubMed  Google Scholar 

  • Song S, Liu L, Edwards SV, Wu S (2012) Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc Natl Acad Sci USA 109:14942–14947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaulding M, O’Leary MA, Gatesy J (2009) Relationships of Cetacea (Artiodactyla) among mammals: increased taxon sampling alters interpretations of key fossils and character evolution. PLoS One 4:e7062

    Article  PubMed  PubMed Central  Google Scholar 

  • Stimpson CD, Tetreault NA, Allman JM, Jacobs B, Butti C, Hof PR, Sherwood CC (2011) Biochemical specificity of von Economo neurons in hominoids. Am J Hum Biol 23:22–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318

    Article  PubMed  Google Scholar 

  • von Economo C (1926) Eine neue Art Spezialzellen des Lobus cinguli und Lobus insulae. Z Ges Neurol Psychiat 100:706–712

    Article  Google Scholar 

  • von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. J. Springer, Wien und Berlin

    Google Scholar 

  • Welker W (1990) Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci. In: Jones EG, Peters A (eds) Comparative structure and evolution of cerebral cortex, Part II. Cerebral cortex, vol 8B. Plenum, New York, pp 3–136

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (BCS-0921079 and BCS-1316829) and the James S. McDonnell Foundation (grant 22002078). Brain materials used in this study were obtained through the Northwestern University Alzheimer’s Disease Center Brain Bank (supported by an Alzheimer’s Disease Core Center grant, P30 AG013854, from the National Institute on Aging to Northwestern University, Chicago, Illinois), Ward’s Scientific (horse, pig, and calf), and Jessica Sudduth (white-tailed deer, permit # 6739695382), and the Department of Wildlife Management, North Slope Borough, Barrow, AK (bowhead whale). We thank the J. Craig George, Barrow captains and crew members, the Barrow Whaling Commission, and the Alaska Eskimo Whaling Commission for allowing collection of bowhead whale brain samples. Through this and other projects, the Inupiat Eskimos have made significant contributions to the general scientific knowledge of cetaceans. The samples were collected under the authority of NOAA-NMFS permit No. 814-1899 to the North Slope Borough. We thank Paul Nader for extracting the bowhead whale brains nearly two decades ago. We also thank Jessica Sudduth, Nathan Heinrichs, Melissa Edler, and Alexa Stephenson for their expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Ann Raghanti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghanti, M.A., Spurlock, L.B., Robert Treichler, F. et al. An analysis of von Economo neurons in the cerebral cortex of cetaceans, artiodactyls, and perissodactyls. Brain Struct Funct 220, 2303–2314 (2015). https://doi.org/10.1007/s00429-014-0792-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0792-y

Keywords

Navigation