Skip to main content
Log in

Combinatorial analysis of calcium-binding proteins in larval and adult zebrafish primary olfactory system identifies differential olfactory bulb glomerular projection fields

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

In the zebrafish (Danio rerio) olfactory epithelium, the calcium-binding proteins (CBPs) calretinin and S100/S100-like protein are mainly expressed in ciliated or crypt olfactory sensory neurons (OSNs), respectively. In contrast parvalbumin and calbindin1 have not been investigated. We present a combinatorial immunohistological analysis of all four CBPs, including their expression in OSNs and their axonal projections to the olfactory bulb in larval and adult zebrafish. A major expression of calretinin and S100 in ciliated and crypt cells, respectively, with some expression of S100 in microvillous cells is confirmed. Parvalbumin and calbindin1 are strongly expressed in ciliated and microvillous cells, but not in crypt cells. Moreover, detailed combinatorial double-label experiments indicate that there are eight subpopulations of zebrafish OSNs: S100-positive crypt cells (negative for all other three CBPs), parvalbumin only, S100 and parvalbumin, parvalbumin and calbindin1, and parvalbumin and calbindin1 and calretinin-positive microvillous OSNs, as well as a major parvalbumin and calbindin1 and calretinin, and minor parvalbumin and calbindin1 and calretinin-only-positive ciliated OSN populations. CBP-positive projections to olfactory bulb are consistent with previous reports of ciliated OSNs projecting to dorsal and ventromedial glomerular fields and microvillous OSNs to ventrolateral glomerular fields. We newly describe parvalbumin-positive fibers to the mediodorsal field which is calretinin free, with its anterior part showing additionally calbindin1-positive fibers, but absence thereof in the posterior part, indicating an origin from microvillous OSNs in both parts. One singular glomerulus (mdG2) exhibits S100 and parvalbumin-positive fibers, apparently originating from all crypt cells plus some microvillous OSNs. Arguments for various olfactory labeled lines are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ac:

Anterior commissure

c:

Cilia

CB(ir):

Calbindin1 (immunoreactive)

CBP(s):

Calcium-binding protein(s)

CeP:

Cerebellar plate (larvae)

Cr:

Crypt OSN

CR(ir):

Calretinin (immunoreactive)

CZ:

Central zone

D/d:

Dendrite

Dp:

Posterior zone of dorsal telencephalic area

DT:

Dorsal thalamus (thalamus)

DZ:

Dorsal zone

EmT:

Eminentia thalami

gl, Gl:

Glomerular layer of olfactory bulb

Glo:

Glomeruli

GPCR:

G-protein-coupled receptor

H:

Hypothalamus

Ha:

Habenula

Had:

Dorsal habenular nucleus

Hav:

Ventral habenular nucleus

icl:

Internal cellular layer of olfactory bulb

lfb:

Lateral forebrain bundle

LG1–4:

Lateral glomeruli 1–4 (larvae)

LOT:

Lateral olfactory tract

m:

Microvilli

MC:

Mitral cell

Mi:

Microvillous OSN

MG1–4:

Medial glomeruli 1–4 (larvae)

MOE:

Main olfactory epithelium

MOS:

Main olfactory system

MOT:

Medial olfactory tract

N:

Region of the nucleus of medial longitudinal fascicle

OB:

Olfactory bulb

oc:

Optic chiasma

OE:

Olfactory epithelium

on:

Optic nerve

ON:

Olfactory nerve

OSN(s):

Olfactory sensory neuron(s)

OR:

Olfactory receptor

P:

Pallium

Po:

Preoptic region

poc:

Postoptic commissure

Pr:

Pretectum (larvae)

PT:

Posterior tuberculum

PV(ir):

Parvalbumin (immunoreactive)

S:

Subpallium

T:

Midbrain tegmentum

Tel:

Telencephalon

TeO:

Optic tectum

Va:

Valvula cerebelli

Vs:

Supracommissural nucleus of ventral telencephalic area

VT:

Ventral thalamus (prethalamus)

Vv:

Ventral nucleus of ventral telencephalic area

a–e:

Dorsal cluster-associated glomeruli 1–5

ap:

Anterior plexus

dc:

Glomeruli of the dorsal cluster

k:

Medial elongated glomerulus

l:

Glomerulus of the lateral chain 1

lc:

Lateral chain

m:

Glomerulus of the lateral chain 2

mdG1–6 :

Mediodorsal posterior glomeruli 1–6

n:

Glomerulus of the lateral chain 3

p:

Glomerulus of the lateral chain 5

q:

Lateroventral posterior glomerulus

u–w:

Glomeruli of the ventral triplet 1–3

vpG:

Ventroposterior glomerulus

References

  • Ahuja G, Ivandic I, Salturk M, Oka Y, Nadler W, Korsching SI (2013) Zebrafish crypt neurons project to a single, identified mediodorsal glomerulus. Nat Sci Rep 3:2063. doi:10.1038/srep02063

    Google Scholar 

  • Ahuja G, Nia SB, Zapilko V, Shiriagin V, Kowatschek D, Oka Y, Korsching S (2014) Kappe neurons, a novel population of olfactory sensory neurons. Nat Sci Rep 4:3037. doi:10.1038/srep04037

    Google Scholar 

  • Alpár A, Attems J, Mulder J, Hökfelt T, Harkany T (2012) The renaissance of Ca2+-binding proteins in the nervous system: secretagogin takes center stage. Cell Signal 24:378–387

    Article  PubMed Central  PubMed  Google Scholar 

  • Arochena M, Anadón R, Díaz-Regueira S (2004) Development of vimentin and glial fibrillary acidid protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost. J Comp Neurol 469:413–436

    Article  CAS  PubMed  Google Scholar 

  • Bae YK, Kani S, Shimizu T, Tanabe K, Nojima H, Kimura Y, Higashijima S, Hibi M (2009) Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Dev Biol 330:406–426

    Article  CAS  PubMed  Google Scholar 

  • Baier H, Korsching S (1994) Olfactory glomeruli in the zebrafish form an invariant pattern and are identifiable across animals. J Neurosci 14:219–230

    CAS  PubMed  Google Scholar 

  • Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. TINS 15:303–308

    CAS  PubMed  Google Scholar 

  • Barinka F, Druga R (2010) Calretinin expression in the mammalian neocortex: a review. Physiol Res 59:665–677

    CAS  PubMed  Google Scholar 

  • Bastianelli E (2003) Distribution of calcium-binding proteins in the cerebellum. Cerebellum 2:242–262

    Article  CAS  PubMed  Google Scholar 

  • Bazwinsky I, Hilbig H, Bidmon H-J, Rübsamen R (2003) Characterization of the human superior olivary complex by calcium binding proteins and neurofilament H (SMI-32). J Comp Neurol 456:292–303

    Article  Google Scholar 

  • Braubach OR, Fine A, Croll RP (2012) Distribution and functional organization of glomeruli in the olfactory bulbs of zebrafish (Danio rerio). J Comp Neurol 520:2317–2339

    Article  PubMed  Google Scholar 

  • Cao Y, Oh BC, Stryer L (1998) Cloning and localization of two multigene receptor families in goldfish olfactory epithelium. Proc Natl Acad Sci USA 95(20):11987–11992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castro A, Becerra M, Manso MJ, Anadón R (2006) Calretinin immunoreactivity in the brain of the zebrafish, Danio rerio: distribution and comparison with some neuropeptides and neurotransmitter-synthesizing enzymes. I. Olfactory organ and forebrain. J Comp Neurol 494:435–459

    Article  CAS  PubMed  Google Scholar 

  • Cheron G, Servais L, Dan B (2008) Cerebellar network plasticity: from genes to fast oscillations. Neuroscience 153:1–19

    Article  CAS  PubMed  Google Scholar 

  • Crespo C, Porteros A, Arévalo R, Briñón JG, Aijón J, Alonso JR (1999) Distribution of parvalbumin immunoreactivity in the brain of the tench (Tinca tinca L., 1758). J Comp Neurol 413:549–571

    Article  CAS  PubMed  Google Scholar 

  • DeMaria S, Berke AP, Van Name E, Heravian A, Ferreira T, Ngai U (2013) Role of a ubiquitously expressed receptor in the vertebrate olfactory system. J Neurosci 33:15235–15247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Derouiche A, Pannicke T, Haselen J, Blaess S, Grosche J, Reichenbach A (2012) Beyond polarity: functional membrane domains in astrocytes and Müller cells. Neurochem Res 37:2513–2523

    Article  CAS  PubMed  Google Scholar 

  • Donata R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, Ceczy CL (2013) Functions of S100 proteins. Curr Mol Med 13:24–57

    Article  Google Scholar 

  • Druga R (2009) Neocortical inhibitory system. Folia Biologica (Praha) 55:201–217

    CAS  Google Scholar 

  • Dynes JL, Ngai J (1998) Pathfinding of olfactory neuron axons to stereotyped glomerular targets revealed by dynamic imaging in living zebrafish embryos. Neuron 20:1081–1091

    Article  CAS  PubMed  Google Scholar 

  • Eisthen HL (1997) Evolution of vertebrate olfactory systems. Brain Behav Evol 50:222–233

    Article  CAS  PubMed  Google Scholar 

  • Eisthen HL (2004) The goldfish knows: olfactory receptor cell morphology predicts receptor gene expression. J Comp Neurol 477:341–346

    Article  CAS  PubMed  Google Scholar 

  • Ferrando S, Bottaro M, Gallus L, Girosi L, Vacchi M, Tagliafierro G (2006) Observations of crypt neuron-like cells in the olfactory epithelium of a cartilaginous fish. Neurosci Lett 403:280–282

    Article  CAS  PubMed  Google Scholar 

  • Floris A, Diño M, Jacobowitz DM, Mugnaini E (1994) The unipolar brush cells of the rat cerebellar cortex and cochlear nucleus are calretinin-positive: a study by light and electron microscopic immunocytochemistry. Anat Embryol 189:495–520

    Article  CAS  PubMed  Google Scholar 

  • Gayoso JA, Castro A, Anadón R, Manso MJ (2011) Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio). J Comp Neurol 519:247–276

    Article  PubMed  Google Scholar 

  • Gayoso J, Castro A, Anadón R, Manso MJ (2012) Crypt cells of the zebrafish Danio rerio mainly project to the dorsomedial glomerular field of the olfactory bulb. Chem Senses 37:357–369

    Article  CAS  PubMed  Google Scholar 

  • Germana A, Montalbano G, Laura R, Ciriaco E, del Valle ME, Vega JA (2004) S100 protein-like immunoreactivity in the crypt olfactory neurons of the adult zebrafish. Neurosci Lett 371:196–198

    Article  CAS  PubMed  Google Scholar 

  • Germana A, Paruta S, Germana GP, Ochoa-Erena FJ, Montalbano G, Cobo J, Vega JA (2007) Differential distribution of S100 protein and calretinin in mechanosensory and chemosensory cells of adult zebrafish (Danio rerio). Brain Res 1162:48–55

    Article  CAS  PubMed  Google Scholar 

  • Gloriam DE, Bjarnadottir TK, Yan YL, Postlethwait JH, Schioth HB, Fredriksson R (2005) The repertoire of trace amine G-protein-coupled receptors: large expansion in zebrafish. Mol Phylogenet Evol 35:470–482

    Article  CAS  PubMed  Google Scholar 

  • Graña P, Huesa G, Anadón R, Yáñez J (2012) Immunohistochemical study of the distribution of calcium binding proteins in the brain of a chondrostean (Acipenser baeri). J Comp Neurol 520:2086–2122

    Article  PubMed  Google Scholar 

  • Hansen A, Finger TE (2000) Phyletic distribution of crypt-type olfactory receptor neurons in fishes. Brain Behav Evol 55:100–110

    Article  CAS  PubMed  Google Scholar 

  • Hansen A, Zippel HP, Sorensen PW, Caprio J (1999) Ultrastructure of the olfactory epithelium in intact, axotomized, and bulbectomized goldfish, Carassius auratus. Microsc Res Tech 45:325–338

    Article  CAS  PubMed  Google Scholar 

  • Hansen A, Rolen SH, Anderson K, Morita Y, Caprio J, Finger TE (2003) Correlation between olfactory receptor cell type and function in the channel catfish. J Neurosci 23:9328–9339

    CAS  PubMed  Google Scholar 

  • Hansen A, Anderson KT, Finger TE (2004) Differential distribution of olfactory receptor neurons in goldfish: structural and molecular correlates. J Comp Neurol 477:347–359

    Article  CAS  PubMed  Google Scholar 

  • Henkel CK, Brunso-Bechthold JK (1998) Calcium-binding proteins and GABA reveal spatial segregation of cell types within the developing lateral superior olivary nucleus of the ferret. Microsc Res Tech 41:234–245

    Article  CAS  PubMed  Google Scholar 

  • Hof PR, Glezer II, Conde F, Flagg RA, Rubin MB, Nimchinsky EA, Vogt-Weisenhorn DM (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat 16:77–116

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Saraiva LR, Korsching SI (2009) Positive Darwinian selection and the birth of an olfactory receptor clade in teleosts. Proc Natl Acad Sci USA 106:4313–4318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hussain A, Saraiva LR, Ferrero DM, Ahuja G, Krishna VS, Liberles SD, Korsching SI (2013) High-affinity olfactory receptor for the death-associated odor cadaverine. PNAS 110:19579–19584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kálmán M (1998) Astroglia architecture of the carp (Cyprinius carpio) brain as revealed by immunohistochemical staining against glial fibrillary acidid protein (GFAP). Anat Embryol 198:409–433

    Article  PubMed  Google Scholar 

  • Koide T, Miyasaka N, Morimoto K, Asakawa K, Urasaki A, Kawakami K, Yoshihara Y (2009) Olfactory neural circuitry for attraction to amino acids revealed by transposon-mediated gene trap approach in zebrafish. Proc Natl Acad Sci USA 106:9884–9889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kraemer AM, Saraiva LR, Korsching S (2008) Structural and functional diversification in the teleost S100 family of calcium-binding proteins. BMC Evol Biol 8:46

    Article  Google Scholar 

  • Kress S, Wullimann MF (2012) Correlated basal expression of immediate early gene egr1 and tyrosine hydroxylase in zebrafish brain and downregulation in olfactory bulb after transitory olfactory deprivation. J Chem Neuroanat 46:51–66

    Article  CAS  PubMed  Google Scholar 

  • Li D, Hérault K, Silm K, Evrard A, Wojcik S, Oheim M, Herzog E, Ropert N (2013) Lack of evidence for vesicular glutamate transporter expression in mouse astrocytes. J Neurosci 33:4434–4455

    Article  CAS  PubMed  Google Scholar 

  • Lillo C, Velasco A, Jimeno D, Cid E, Lara JM, Aijón J (2002) The glial design of a teleost optic nerve head supporting continuous growth. J Histochem Cytochem 50:1289

    Article  CAS  PubMed  Google Scholar 

  • Ma PM (1993) Tanycytes in the sunfish brain: NADPH-diaphorase histochemistry and regional distribution. J Comp Neurol 336:77–95

    Article  CAS  PubMed  Google Scholar 

  • Manso MJ, Becerra M, Becerra M, Anadón R (1997) Expression of a low-molecular-weight (10 kDa) calcium binding protein in glial cells of the brain of the trout (Teleostei). Anat Embryol 196:403–416

    Article  CAS  PubMed  Google Scholar 

  • Mathuru AS, Jesuthasan S (2013) The medial habenula as a regulator of anxiety in adult zebrafish. Front Neural Circuits 7:99

    Article  PubMed Central  PubMed  Google Scholar 

  • Miyasaka N, Morimoto K, Tsubokawa T, Higashijima S, Okamoto H, Yoshihara Y (2009) From the olfactory bulb to higher brain centers: genetic visualization of secondary olfactory pathways in zebrafish. J Neurosci 29:4756–4767

    Article  CAS  PubMed  Google Scholar 

  • Mueller T, Wullimann MF, Guo S (2008) Early teleostean basal ganglia development visualized by zebrafish Dlx2a, Lhx6, Lhx7, Tbr2 (eomesa), and GAD67 gene expression. J Comp Neurol 507:1245–1257

    Article  CAS  PubMed  Google Scholar 

  • Oka Y, Korsching SI (2011) Shared and unique G alpha proteins in the zebrafish versus mammalian senses of taste and smell. Chem Senses 36:357–365

    Article  CAS  PubMed  Google Scholar 

  • Oka Y, Saraiva LR, Korsching SI (2012) Crypt neurons express a single V1R-related ora gene. Chem Senses 37:219–227

    Article  CAS  PubMed  Google Scholar 

  • Pfister P, Rodriguez I (2005) Olfactory expression of a single and highly variable V1r pheromone receptor-like gene in fish species. Proc Natl Acad Sci USA 102:5489–5494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers JH (1987) Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 105:1343–1353

    Article  CAS  PubMed  Google Scholar 

  • Sandulescu CM, Teow RY, Hale ME, Zhang C (2011) Onset and dynamic expression of S100 proteins in the olfactory organ and the lateral line system in zebrafish development. Brain Res 1383:120–127

    Article  CAS  PubMed  Google Scholar 

  • Saraiva LR, Korsching SI (2007) A novel olfactory receptor gene family in teleost fish. Genome Res 17(10):1448–1457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sato Y, Miyasaka N, Yoshihara Y (2005) Mutually exclusive glomerular innervation by two distinct types of olfactory sensory neurons revealed in transgenic zebrafish. J Neurosci 25:4889–4897

    Article  CAS  PubMed  Google Scholar 

  • Spehr M, Spehr J, Ukhanov K, Kelliher KR, Leinders-Zufall T, Zufall F (2006) Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell Mol Life Sci 63:1476–1484

    Article  CAS  PubMed  Google Scholar 

  • Vielma A, Ardiles A, Delgado L, Schmachtenberg O (2008) The elusive crypt olfactory receptor neuron: evidence for its stimulation by amino acids and cAMP pathway agonists. J Exp Biol 211(Pt 15):2417–2422

    Article  CAS  PubMed  Google Scholar 

  • Zaitsev AV, Gonzalez-Burgos G, Povysheva NV, Kröner S, Lewis DA, Krimer LS (2005) Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. Cereb Cortex 15:1178–1186

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft (DFG, Bonn) for support within the SPP 1392 (Projects Wu 211/2-1 and Wu 211/1-2) as well as Prof. Dr. Benedikt Grothe and the Graduate School for Systemic Neurosciences (GSN) at the Ludwig-Maximilians-Universität Munich for additional support. We furthermore thank Bea Stiening for technical support and Dr. Olga Alexandrova for help with confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario F. Wullimann.

Additional information

S. Kress and D. Biechl share first authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kress, S., Biechl, D. & Wullimann, M.F. Combinatorial analysis of calcium-binding proteins in larval and adult zebrafish primary olfactory system identifies differential olfactory bulb glomerular projection fields. Brain Struct Funct 220, 1951–1970 (2015). https://doi.org/10.1007/s00429-014-0765-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0765-1

Keywords

Navigation