Skip to main content
Log in

Dysregulation of dopaminergic regulatory mechanisms in the mesolimbic pathway induced by morphine and morphine withdrawal

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Dopamine (DA) is thought to represent a teaching signal and has been implicated in the induction of addictive behaviours. Previously, it has been proposed that the transcription factors Nurr1 and Pitx3, which are critical for transcription of a set of genes involved in DA metabolism in the mesolimbic pathway, are associated with addiction pathology. The aim of our study was to investigate abnormalities in the mesolimbic pathway associated with morphine dependence and withdrawal. Using quantitative real-time PCR, immunofluorescence, HPLC and Western blotting, here we studied the effects of single morphine administration, morphine dependence and morphine withdrawal on Nurr1 and Pitx3 expression as well as on the DA marker tyrosine hydroxylase (TH) and the turnover of DA in the ventral tegmental area (VTA) and/or nucleus accumbens. We showed that the three experimental conditions caused induction of Nurr1 and Pitx3 in the VTA, which correlated with changes in TH expression during chronic morphine administration. Present data also confirmed the colocalization of Nurr1 and Pitx3 with TH-positive neurons in the posterior VTA. Furthermore, during morphine dependence, Nurr1 was detected in the nucleus compartment of VTA TH-positive neurons, whereas Pitx3 was strongly detected in the nucleus of TH-positive neurons after single morphine administration and during morphine withdrawal. The number of TH neurons, number of Nurr1 or Pitx3-positive cells, and the number of TH neurons expressing Nurr1 or Pitx3 were not modified in the subpopulations of DA neurons. Present data provide novel insight into the potential correlation between Nurr1 and Pitx3 and DA neurons plasticity during opiate addiction in the mesolimbic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Compton WM, Volkow ND (2006) Major increases in opioid analgesic abuse in the United States: concerns and strategies. Drug Alcohol Depend 81:103–107

    Article  PubMed  Google Scholar 

  • Di Chiara G, Bassareo V (2007) Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharmacol 7:69–76

    Article  PubMed  Google Scholar 

  • Dunn KW, Kamocka MM, MacDonald JH (2011) A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol 300:C723–C742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frenois F, Cador M, Caille S, Stinus L, Le Moine C (2002) Neural correlates of the motivational and somatic components of naloxone-precipitated morphine withdrawal. Eur J Neurosci 16:1377–1389

    Article  PubMed  Google Scholar 

  • García-Pérez D, Laorden ML, Milanes MV, Níñez C (2012) Glucocorticoids regulation of FosB/DFosB expression induced by chronic opiate exposure in the brain stress system. PLoS One 7:e50264

    Article  PubMed Central  PubMed  Google Scholar 

  • García-Pérez D, López-Bellido R, Hidalgo JM, Rodriguez RE, Laorden ML, Núñez C, Milanés MV (2013a) Morphine regulates Argonaute 2 and TH expression and activity but not miR-133b in midbrain dopaminergic neurons. Addict Biol. doi:10.1111/adb.12083

  • García-Pérez D, Sáez-Belmonte F, Laorden ML, Núñez C, Milanés MV, Milanés MV (2013b) Morphine administration modulates expression of Argonaute 2 and dopamine-related transcription factors involved in midbrain dopaminergic neurons function. Br J Pharmacol 168:1889–1901

    Article  PubMed Central  PubMed  Google Scholar 

  • Georges F, Le Moine C, Aston-Jones G (2006) No effects of morphine on ventral tegmental dopamine neurons during withdrawal. J Neurosci 26:5720–5726

    Article  CAS  PubMed  Google Scholar 

  • Horvath MC, Kovacs GG, Kovari V, Majtenyi K, Hurd YL, Keller E (2007) Heroin abuse is characterized by discrete mesolimbic dopamine and opioid abnormalities and exaggerated nuclear receptor-related 1 transcriptional decline with age. J Neurosci 27:13371–13375

    Article  CAS  PubMed  Google Scholar 

  • Houshyar H, Manalo S, Dallman MF (2004) Time-dependent alterations in mRNA expression of brain neuropeptides regulating energy balance and hypothalamo-pituitary-adrenal activity after withdrawal from intermittent morphine treatment. J Neurosci 24:9414–9424

    Article  CAS  PubMed  Google Scholar 

  • Hwang DY, Hong S, Jeong JW, Choi S, Kim H, Kim J, Kim KS (2009) Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons. J Neurochem 111:1202–1212

    Article  CAS  PubMed  Google Scholar 

  • Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Ann Rev Neurosci 29:565–598

    Article  CAS  PubMed  Google Scholar 

  • Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Brain Res Rev 56:27–78

    Article  CAS  Google Scholar 

  • Jacobs FMJ, van der Linden AJA, Wang Y, von Oerthel L, Sul HS, Burbach JPH, Smidt MP (2009a) Identification of Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons. Development 136:2363–2373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobs FMJ, van Erp S, van der Linden AJA, von Oerthel L, Burbach JP, Smidt MP (2009b) Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression. Development 136:531–540

    Article  CAS  PubMed  Google Scholar 

  • Jankovic J, Chen S, Le WD (2005) The role of Nurr1 in the development of dopaminergic neurons and Parkinson’s disease. Prog Neurobiol 77:128–138

    Article  CAS  PubMed  Google Scholar 

  • Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483–488

    CAS  PubMed  Google Scholar 

  • Kadkhodaei B, Ito T, Joodmardi E, Mattsson B, Rouillard C, Carta M, Muramatsu SI, Sumi-Ichinose C, Nomura T, Metzger D, Chambon P, Lindqvist E, Larsson NG, Olson L, Björklund A, Ichinose H, Perlmann T (2009) Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J Neurosci 29:15923–15932

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413

    Article  PubMed  Google Scholar 

  • Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lammel S, Lim BK, Ran C, Betley MJ, Tye KM, Malenka RC (2012) Input-specific control of reward and aversion in the ventral tegmental area. Nature 491:212–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lammel S, Lim BK, Malenka RC (2014) Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76(Part B):351–359

    Article  CAS  PubMed  Google Scholar 

  • Leng A, Feldon J, Ferger B (2004) Long-term social isolation and medial prefrontal cortex: dopaminergic and cholinergic neurotransmission. Pharmacol Biochem Behav 77:371–379

    Article  CAS  PubMed  Google Scholar 

  • Leo D, di Porzio U, Racagni G, Riva MA, Fumagalli F, Perrone-Capano C (2007) Chronic cocaine administration modulates the expression of transcription factors involved in midbrain dopaminergic neuron function. Exp Neurol 203:472–480

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Vogel C, Wang R, Yao X, Marcotte EM (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotech 25:117–124

    Article  CAS  Google Scholar 

  • Matthes HWD, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, Befort K, Dierich A, Le Meur M, Dolle P, Tzavara E, Hanoune J, Roques B, Kieffer BL (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the [micro]-opioid-receptor gene. Nature 383:819–823

    Article  CAS  PubMed  Google Scholar 

  • Mazei-Robison MS, Nestler EJ (2012) Opiate-induced molecular and cellular plasticity of ventral tegmental area and locus coeruleus catecholamine neurons. Cold Spring Harb Perspect Med 2:a012070

    Google Scholar 

  • McClung CA, Nestler EJ (2008) Neuroplasticity mediated by altered gene expression. Neuropsychopharmacology 33:3–17

    Article  CAS  PubMed  Google Scholar 

  • Meye FJ, van Zessen R, Smidt MP, Adan RAH, Ramakers GMJ (2012) Morphine withdrawal enhances constitutive ++-opioid receptor activity in the ventral tegmental area. J Neurosci 32:16120–16128

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ (2012) Transcriptional mechanisms of drug addiction. Clin Psychopharmacol Neurosci 10:136–143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Núñez C, Földes A, Pérez-Flores D, García-Borrón JC, Laorden ML, Kovács KJ, Milanés MV (2009) Elevated glucocorticoid levels are responsible for induction of tyrosine hydroxylase (TH) mRNA expression, phosphorylation and enzyme activity in the nucleus of the solitary tract (NTS-A2) during morphine withdrawal. Endocrinology 150:3118–3127

    Article  PubMed Central  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, Amsterdam

    Google Scholar 

  • Radke AK, Rothwell PE, Gevirtz JC (2011) An anatomical basis for opponent process mechanisms of opiate withdrawal. J Neurosci 31:7533–7539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy SD, Rayala SK, Ohshiro K, Pakala SB, Kobori N, Dash P, Yun S, Qin J, O’Malley BW (2011) Multiple coregulatory control of tyrosine hydroxylase gene transcription. PNAS 108:4200–4205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roeper J (2013) Dissecting the diversity of midbrain dopamine neurons. TINS 36:336–342

    CAS  PubMed  Google Scholar 

  • Sanchez-Simon FM, Zhang XX, Loh HH, Law PY, Rodriguez RE (2010) Morphine regulates dopaminergic neuron differentiation via miR-133b. Mol Pharmacol 78:935–942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smidt MP, van Schaick HSA, Lanctôt C, Tremblay JJ, Cox JJ, van der Kleij AAM, Wolterink G, Drouin J, Burbach JP (1997) A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. PNAS 94:13305–13310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smidt MP, Asbreuk CH, Cox JJ, Chen H, Johnson RL, Burbach JP (2000) A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat Neurosci 3:337–341

    Article  CAS  PubMed  Google Scholar 

  • Smidt MP, Smits SM, Burbach JP (2004) Homeobox gene Pitx3 and its role in the development of dopamine neurons of the substantia nigra. Cell Tissue Res 318:35–43

    Article  CAS  PubMed  Google Scholar 

  • Smits SM, Smidt MP (2006) The role of Pitx3 in survival of midbrain dopaminergic neurons. J Neural Transm Suppl 70:57–60

    Article  CAS  PubMed  Google Scholar 

  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analysis. Nat Rev Genet 13:227–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Volkow ND, Skolnick P (2012) New medications for substance use disorders: challenges and opportunities. Neuropsychopharmacology 37:290–292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Baler R, Telang F (2009) Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology 56:3–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang D, Raehal KM, Lin ET, Lowery JJ, Kieffer BL, Bilsky EJ, Sadée W (2004) Basal signaling activity of μ-opioid receptor in mouse brain: role in narcotic dependence. J Pharmacol Exp Ther 308:512–520

    Article  CAS  PubMed  Google Scholar 

  • Zangen A, Ikemoto S, Zadina JE, Wise RA (2002) Rewarding and psychomotor stimulant effects of endomorphin-1: anteroposterior differences within the ventral tegmental area and lack of effect in nucleus accumbens. J Neurosci 22:7225–7233

    CAS  PubMed  Google Scholar 

  • Zinchuk V, Zinchuk O, Okada T (2007) Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta Histochem Cytochem 40:101–111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Ministerio de Ciencia e Imnovación (SAF/FEDER 2009-07178; SAF/FEDER 2010-17907), Spain; Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III, Spain; Fundación Séneca (15405/PI/10), Región de Murcia, Spain. Daniel García-Pérez was supported by a fellowship from Ministerio de Economía e Innovación (AP2009-2379).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Victoria Milanés.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Pérez, D., López-Bellido, R., Rodríguez, R.E. et al. Dysregulation of dopaminergic regulatory mechanisms in the mesolimbic pathway induced by morphine and morphine withdrawal. Brain Struct Funct 220, 1901–1919 (2015). https://doi.org/10.1007/s00429-014-0761-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0761-5

Keywords

Navigation