Brain Structure and Function

, Volume 220, Issue 1, pp 101–115 | Cite as

Multivariate classification of social anxiety disorder using whole brain functional connectivity

  • Feng Liu
  • Wenbin Guo
  • Jean-Paul Fouche
  • Yifeng Wang
  • Wenqin Wang
  • Jurong Ding
  • Ling Zeng
  • Changjian Qiu
  • Qiyong Gong
  • Wei Zhang
  • Huafu ChenEmail author
Original Article


Recent research has shown that social anxiety disorder (SAD) is accompanied by abnormalities in brain functional connections. However, these findings are based on group comparisons, and, therefore, little is known about whether functional connections could be used in the diagnosis of an individual patient with SAD. Here, we explored the potential of the functional connectivity to be used for SAD diagnosis. Twenty patients with SAD and 20 healthy controls were scanned using resting-state functional magnetic resonance imaging. The whole brain was divided into 116 regions based on automated anatomical labeling atlas. The functional connectivity between each pair of regions was computed using Pearson’s correlation coefficient and used as classification feature. Multivariate pattern analysis was then used to classify patients from healthy controls. The pattern classifier was designed using linear support vector machine. Experimental results showed a correct classification rate of 82.5 % (p < 0.001) with sensitivity of 85.0 % and specificity of 80.0 %, using a leave-one-out cross-validation method. It was found that the consensus connections used to distinguish SAD were largely located within or across the default mode network, visual network, sensory-motor network, affective network, and cerebellar regions. Specifically, the right orbitofrontal region exhibited the highest weight in classification. The current study demonstrated that functional connectivity had good diagnostic potential for SAD, thus providing evidence for the possible use of whole brain functional connectivity as a complementary tool in clinical diagnosis. In addition, this study confirmed previous work and described novel pathophysiological mechanisms of SAD.


Social anxiety disorder/social phobia Multivariate pattern analysis Support vector machine Functional connectivity Resting-state fMRI Consensus features 



The authors thank the two anonymous reviewers for constructive suggestions and Kim-Han Thung for the proof-reading and valuable comments. H. Chen was supported by the 973 project (No. 2012CB517901), the Natural Science Foundation of China (Nos. 61125304 and 61035006), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120185110028). F. Liu was supported by China Scholarship Council (No. 2011607033) and the Scholarship Award for Excellent Doctoral Student granted by Ministry of Education (No. A03003023901010). L. Zeng was supported by the Natural Science Foundation of China (No. 81171406). W. Guo was supported by the Natural Science Foundation of China (Nos. 81260210 and 30900483).

Conflict of interest

All authors declare that they have no conflicts of interest.

Supplementary material

429_2013_641_MOESM1_ESM.docx (226 kb)
Supplementary material 1 (DOCX 225 kb)


  1. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72PubMedCrossRefGoogle Scholar
  2. Akay MF (2009) Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst Appl 36:3240–3247CrossRefGoogle Scholar
  3. Anderson B, Goldin PR, Kurita K, Gross JJ (2008) Self-representation in social anxiety disorder: linguistic analysis of autobiographical narratives. Behav Res Ther 46:1119–1125PubMedCentralPubMedCrossRefGoogle Scholar
  4. Anderson JS, Nielsen JA, Froehlich AL, DuBray MB, Druzgal TJ, Cariello AN, Cooperrider JR, Zielinski BA, Ravichandran C, Fletcher PT, Alexander AL, Bigler ED, Lange N, Lainhart JE (2011) Functional connectivity magnetic resonance imaging classification of autism. Brain 134:3742–3754PubMedCrossRefGoogle Scholar
  5. APA. Diagnostic and statistical manual of mental disorders: DSM-IV. American Psychiatric Publishing, Inc., 1994Google Scholar
  6. Baldacara L, Borgio JG, Lacerda AL, Jackowski AP (2008) Cerebellum and psychiatric disorders. Rev Bras Psiquiatr 30:281–289PubMedCrossRefGoogle Scholar
  7. Beer JS, John OP, Scabini D, Knight RT (2006) Orbitofrontal cortex and social behavior: integrating self-monitoring and emotion-cognition interactions. J Cogn Neurosci 18:871–879PubMedCrossRefGoogle Scholar
  8. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn Reson Med 34:537–541PubMedCrossRefGoogle Scholar
  9. Blackmon K, Barr WB, Carlson C, Devinsky O, Dubois J, Pogash D, Quinn BT, Kuzniecky R, Halgren E, Thesen T (2011) Structural evidence for involvement of a left amygdala-orbitofrontal network in subclinical anxiety. Psychiatry Res 194:296–303PubMedCentralPubMedCrossRefGoogle Scholar
  10. Borg C, Bedoin N, Peyron R, Bogey S, Laurent B, Thomas-Antérion C (2012) Impaired emotional processing in a patient with a left posterior insula-SII lesion. Neurocase. doi: 10.1080/13554794.2012.713491
  11. Bruhl AB, Rufer M, Delsignore A, Kaffenberger T, Jancke L, Herwig U (2011) Neural correlates of altered general emotion processing in social anxiety disorder. Brain Res 1378:72–83PubMedCrossRefGoogle Scholar
  12. Bruhl AB, Herwig U, Delsignore A, Jancke L, Rufer M (2013) General emotion processing in social anxiety disorder: neural issues of cognitive control. Psychiatry Res 212:108–115PubMedCrossRefGoogle Scholar
  13. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349PubMedGoogle Scholar
  14. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2:121–167CrossRefGoogle Scholar
  15. Campbell DW, Sareen J, Paulus MP, Goldin PR, Stein MB, Reiss JP (2007) Time-varying amygdala response to emotional faces in generalized social phobia. Biol Psychiatry 62:455–463PubMedCrossRefGoogle Scholar
  16. Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2:27Google Scholar
  17. Chen YW, Lin CJ (2006) Combining SVMs with various feature selection strategies. Feature Extr 207:315–324Google Scholar
  18. Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inform Theory 13:21–27CrossRefGoogle Scholar
  19. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853PubMedCentralPubMedCrossRefGoogle Scholar
  20. Dosenbach NUF, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN (2010) Prediction of individual brain maturity using fMRI. Science 329:1358PubMedCentralPubMedCrossRefGoogle Scholar
  21. Engel K, Bandelow B, Gruber O, Wedekind D (2009) Neuroimaging in anxiety disorders. J Neural Transm 116:703–716PubMedCentralPubMedCrossRefGoogle Scholar
  22. Etkin A, Wager TD (2007) Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 164:1476–1488PubMedCentralPubMedCrossRefGoogle Scholar
  23. Fan Y, Resnick SM, Wu X, Davatzikos C (2008) Structural and functional biomarkers of prodromal Alzheimer’s disease: a high-dimensional pattern classification study. Neuroimage 41:277–285PubMedCentralPubMedCrossRefGoogle Scholar
  24. Fink M, Akimova E, Spindelegger C, Hahn A, Lanzenberger R, Kasper S (2009) Social anxiety disorder: epidemiology, biology and treatment. Psychiatr Danub 21:533–542PubMedGoogle Scholar
  25. Fouche JP, van Der Wee NJ, Roelofs K, Stein DJ (2013) Recent advances in the brain imaging of social anxiety disorder. Hum Psychopharmacol 28:102–105PubMedCrossRefGoogle Scholar
  26. Fox MD, Greicius M (2010) Clinical applications of resting state functional connectivity. Front Syst Neurosci 4:19PubMedCentralPubMedGoogle Scholar
  27. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678PubMedCentralPubMedCrossRefGoogle Scholar
  28. Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101:3270–3283PubMedCentralPubMedCrossRefGoogle Scholar
  29. Friston KJ (2004) Functional integration in the brain. In: Human brain function, 2nd edn. Academic Press, San Diego pp 971–997Google Scholar
  30. Frith U, Frith CD (2003) Development and neurophysiology of mentalizing. Philos Trans R Soc Lond B Biol Sci 358:459–473PubMedCentralPubMedCrossRefGoogle Scholar
  31. Gentili C, Gobbini MI, Ricciardi E, Vanello N, Pietrini P, Haxby JV, Guazzelli M (2008) Differential modulation of neural activity throughout the distributed neural system for face perception in patients with Social Phobia and healthy subjects. Brain Res Bull 77:286–292PubMedCrossRefGoogle Scholar
  32. Gentili C, Ricciardi E, Gobbini MI, Santarelli MF, Haxby JV, Pietrini P, Guazzelli M (2009) Beyond amygdala: default mode network activity differs between patients with social phobia and healthy controls. Brain Res Bull 79:409–413PubMedCrossRefGoogle Scholar
  33. Goldin PR, Gross JJ (2010) Effects of mindfulness-based stress reduction (MBSR) on emotion regulation in social anxiety disorder. Emotion 10:83–91PubMedCentralPubMedCrossRefGoogle Scholar
  34. Goldin PR, Manber-Ball T, Werner K, Heimberg R, Gross JJ (2009a) Neural mechanisms of cognitive reappraisal of negative self-beliefs in social anxiety disorder. Biol Psychiatry 66:1091–1099PubMedCentralPubMedCrossRefGoogle Scholar
  35. Goldin PR, Manber T, Hakimi S, Canli T, Gross JJ (2009b) Neural bases of social anxiety disorder: emotional reactivity and cognitive regulation during social and physical threat. Arch Gen Psychiatry 66:170–180PubMedCentralPubMedCrossRefGoogle Scholar
  36. Golland P, Fischl B (2003) Permutation tests for classification: towards statistical significance in image-based studies. Inf Process Med Imaging 18:330–341PubMedCrossRefGoogle Scholar
  37. Greicius M (2008) Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 21:424PubMedCrossRefGoogle Scholar
  38. Gross-Isseroff R, Kushnir T, Hermesh H, Marom S, Weizman A, Manor D (2010) Alteration learning in social anxiety disorder: an fMRI study. World J Biol Psychiatry 11:352–356PubMedCrossRefGoogle Scholar
  39. Guo WB, Liu F, Xue ZM, Yu Y, Ma CQ, Tan CL, Sun XL, Chen JD, Liu ZN, Xiao CQ, Chen HF, Zhao JP (2011) Abnormal neural activities in first-episode, treatment-naive, short-illness-duration, and treatment-response patients with major depressive disorder: a resting-state fMRI study. J Affect Disord 135:326–331PubMedCrossRefGoogle Scholar
  40. Guo W, Liu F, Xue Z, Gao K, Liu Z, Xiao C, Chen H, Zhao J (2013) Abnormal resting-state cerebellar-cerebral functional connectivity in treatment-resistant depression and treatment sensitive depression. Prog Neuropsychopharmacol Biol Psychiatry 44:51–57PubMedCrossRefGoogle Scholar
  41. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422CrossRefGoogle Scholar
  42. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159PubMedCentralPubMedCrossRefGoogle Scholar
  43. Hahn A, Stein P, Windischberger C, Weissenbacher A, Spindelegger C, Moser E, Kasper S, Lanzenberger R (2011) Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder. Neuroimage 56:881–889PubMedCrossRefGoogle Scholar
  44. Haker A, Aderka IM, Marom S, Hermesh H, Gilboa-Schechtman E (2013) Impression formation and revision in social anxiety disorder. J Anxiety DisordGoogle Scholar
  45. Hattingh CJ, Ipser J, Tromp SA, Syal S, Lochner C, Brooks SJ, Stein DJ (2012) Functional magnetic resonance imaging during emotion recognition in social anxiety disorder: an activation likelihood meta-analysis. Frontiers Hum Neurosci 6:347Google Scholar
  46. Hayasaka S, Laurienti PJ (2010) Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data. Neuroimage 50:499–508PubMedCentralPubMedCrossRefGoogle Scholar
  47. Huang CL, Chen MC, Wang CJ (2007) Credit scoring with a data mining approach based on support vector machines. Expert Syst Appl 33:847–856CrossRefGoogle Scholar
  48. Jefferys D (1997) Social phobia. The most common anxiety disorder. Aust Fam Physician 26(1061):1064Google Scholar
  49. Jiang T (2013) Brainnetome: a new -ome to understand the brain and its disorders. Neuroimage 80:263–272PubMedCrossRefGoogle Scholar
  50. Kilts CD, Kelsey JE, Knight B, Ely TD, Bowman FD, Gross RE, Selvig A, Gordon A, Newport DJ, Nemeroff CB (2006) The neural correlates of social anxiety disorder and response to pharmacotherapy. Neuropsychopharmacology 31:2243–2253PubMedCrossRefGoogle Scholar
  51. Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI (2009) Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci 12:535–540PubMedCentralPubMedCrossRefGoogle Scholar
  52. Liao W, Chen H, Feng Y, Mantini D, Gentili C, Pan Z, Ding J, Duan X, Qiu C, Lui S, Gong Q, Zhang W (2010a) Selective aberrant functional connectivity of resting state networks in social anxiety disorder. Neuroimage 52:1549–1558PubMedCrossRefGoogle Scholar
  53. Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X, Luo C, Lu G, Chen H (2010b) Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS ONE 5:e8525PubMedCentralPubMedCrossRefGoogle Scholar
  54. Lindquist KA, Wager TD, Kober H, Bliss-Moreau E, Barrett LF (2012) The brain basis of emotion: a meta-analytic review. Behav Brain Sci 35:121–143PubMedCrossRefGoogle Scholar
  55. Liu Y, Yu C, Liang M, Li J, Tian L, Zhou Y, Qin W, Li K, Jiang T (2007) Whole brain functional connectivity in the early blind. Brain J Neurol 130:2085–2096CrossRefGoogle Scholar
  56. Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, Yu C, Liu H, Liu Z, Jiang T (2008) Disrupted small-world networks in schizophrenia. Brain 131:945–961PubMedCrossRefGoogle Scholar
  57. Liu F, Guo W, Yu D, Gao Q, Gao K, Xue Z, Du H, Zhang J, Tan C, Liu Z, Zhao J, Chen H (2012a) Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PLoS ONE 7:e40968PubMedCentralPubMedCrossRefGoogle Scholar
  58. Liu F, Hu M, Wang S, Guo W, Zhao J, Li J, Xun G, Long Z, Zhang J, Wang Y, Zeng L, Gao Q, Wooderson SC, Chen J, Chen H (2012b) Abnormal regional spontaneous neural activity in first-episode, treatment-naive patients with late-life depression: a resting-state fMRI study. Prog Neuropsychopharmacol Biol Psychiatry 39:326–331PubMedCrossRefGoogle Scholar
  59. Luo C, Qiu C, Guo Z, Fang J, Li Q, Lei X, Xia Y, Lai Y, Gong Q, Zhou D, Yao D (2011) Disrupted functional brain connectivity in partial epilepsy: a resting-state fMRI study. PLoS ONE 7:e28196PubMedCrossRefGoogle Scholar
  60. Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, Silva JA, Tekell JL, Martin CC, Lancaster JL, Fox PT (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156:675–682PubMedGoogle Scholar
  61. Meier TB, Desphande AS, Vergun S, Nair VA, Song J, Biswal BB, Meyerand ME, Birn RM, Prabhakaran V (2012) Support vector machine classification and characterization of age-related reorganization of functional brain networks. Neuroimage 60:601–613PubMedCentralPubMedCrossRefGoogle Scholar
  62. Milad MR, Rauch SL (2007) The role of the orbitofrontal cortex in anxiety disorders. Ann N Y Acad Sci 1121:546–561PubMedCrossRefGoogle Scholar
  63. Mitchell TM (1997) Machine learning, vol 45. McGraw Hill, Burr RidgeGoogle Scholar
  64. Mourao-Miranda J, Bokde AL, Born C, Hampel H, Stetter M (2005) Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data. Neuroimage 28:980–995PubMedCrossRefGoogle Scholar
  65. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44:893–905PubMedCentralPubMedCrossRefGoogle Scholar
  66. Nakao T, Sanematsu H, Yoshiura T, Togao O, Murayama K, Tomita M, Masuda Y, Kanba S (2011) fMRI of patients with social anxiety disorder during a social situation task. Neurosci Res 69:67–72PubMedCrossRefGoogle Scholar
  67. Norman KA, Polyn SM, Detre GJ, Haxby JV (2006) Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci 10:424–430PubMedCrossRefGoogle Scholar
  68. Ohayon MM, Schatzberg AF (2010) Social phobia and depression: prevalence and comorbidity. J Psychosom Res 68:235–243PubMedCrossRefGoogle Scholar
  69. Olson IR, Plotzker A, Ezzyat Y (2007) The enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130:1718–1731PubMedCrossRefGoogle Scholar
  70. Pereira F, Mitchell T, Botvinick M (2009) Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45:S199–S209PubMedCentralPubMedCrossRefGoogle Scholar
  71. Polosan M, Baciu M, Cousin E, Perrone M, Pichat C, Bougerol T (2011) An fMRI study of the social competition in healthy subjects. Brain Cogn 77:401–411PubMedCrossRefGoogle Scholar
  72. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142–2154PubMedCentralPubMedCrossRefGoogle Scholar
  73. Qiu C, Liao W, Ding J, Feng Y, Zhu C, Nie X, Zhang W, Chen H, Gong Q (2011) Regional homogeneity changes in social anxiety disorder: a resting-state fMRI study. Psychiatry Res 194:47–53PubMedCrossRefGoogle Scholar
  74. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682PubMedCentralPubMedCrossRefGoogle Scholar
  75. Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A, Cox RW (2012) Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connectivity 2:25–32PubMedCentralPubMedCrossRefGoogle Scholar
  76. Satterthwaite TD, Wolf DH, Loughead J, Ruparel K, Elliott MA, Hakonarson H, Gur RC, Gur RE (2012) Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. Neuroimage 60:623–632PubMedCentralPubMedCrossRefGoogle Scholar
  77. Schmahmann JD (2010) The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev 20:236–260PubMedCrossRefGoogle Scholar
  78. Schölkopf B, Smola AJ (2001) Learning with kernels: Support vector machines, regularization, optimization, and beyond. MIT press, CambridgeGoogle Scholar
  79. Shi F, Liu Y, Jiang T, Zhou Y, Zhu W, Jiang J, Liu H, Liu Z (2007) Regional homogeneity and anatomical parcellation for fMRI image classification: application to schizophrenia and normal controls. Med Image Comput Comput Assist Interv 10:136–143PubMedGoogle Scholar
  80. Smith K (2012) Brain imaging: fMRI 2.0. Nature 484:24–26PubMedCrossRefGoogle Scholar
  81. Sorg C, Riedl V, Mühlau M, Calhoun VD, Eichele T, Läer L, Drzezga A, Förstl H, Kurz A, Zimmer C (2007) Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci USA 104:18760–18765PubMedCentralPubMedCrossRefGoogle Scholar
  82. Sporns O (2011) The human connectome: a complex network. Ann N Y Acad Sci 1224:109–125PubMedCrossRefGoogle Scholar
  83. Stein JF, Glickstein M (1992) Role of the cerebellum in visual guidance of movement. Physiol Rev 72:967–1017PubMedGoogle Scholar
  84. Stein MB, Stein DJ (2008) Social anxiety disorder. The Lancet 371:1115–1125CrossRefGoogle Scholar
  85. Su L, Wang L, Chen F, Shen H, Li B, Hu D (2012) Sparse representation of brain aging: extracting covariance patterns from structural MRI. PLoS ONE 7:e36147PubMedCentralPubMedCrossRefGoogle Scholar
  86. Syal S, Hattingh CJ, Fouche JP, Spottiswoode B, Carey PD, Lochner C, Stein DJ (2012) Grey matter abnormalities in social anxiety disorder: a pilot study. Metab Brain Dis 27:299–309PubMedCrossRefGoogle Scholar
  87. Talati A, Pantazatos SP, Schneier FR, Weissman MM, Hirsch J (2013) Gray matter abnormalities in social anxiety disorder: primary, replication, and specificity studies. Biol Psychiatry 73:75–84PubMedCentralPubMedCrossRefGoogle Scholar
  88. Tang Y, Jiang W, Liao J, Wang W, Luo A (2013) Identifying individuals with antisocial personality disorder using resting-state FMRI. PLoS ONE 8:e60652PubMedCentralPubMedCrossRefGoogle Scholar
  89. Tian L, Wang J, Yan C, He Y (2011) Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study. Neuroimage 54:191–202PubMedCrossRefGoogle Scholar
  90. Tillfors M, Furmark T, Marteinsdottir I, Fischer H, Pissiota A, Langstrom B, Fredrikson M (2001) Cerebral blood flow in subjects with social phobia during stressful speaking tasks: a PET study. Am J Psychiatry 158:1220–1226PubMedCrossRefGoogle Scholar
  91. Tillfors M, Furmark T, Marteinsdottir I, Fredrikson M (2002) Cerebral blood flow during anticipation of public speaking in social phobia: a PET study. Biol Psychiatry 52:1113–1119PubMedCrossRefGoogle Scholar
  92. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289PubMedCrossRefGoogle Scholar
  93. Uddin LQ, Menon V, Young CB, Ryali S, Chen T, Khouzam A, Minshew NJ, Hardan AY (2011) Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism. Biol Psychiatry 70:833–841PubMedCentralPubMedCrossRefGoogle Scholar
  94. Van Dijk KR, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59:431–438PubMedCentralPubMedCrossRefGoogle Scholar
  95. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York IncGoogle Scholar
  96. Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, Chen Z, Zhu C, He Y (2009) Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum Brain Mapp 30:1511–1523PubMedCrossRefGoogle Scholar
  97. Wang L, Shen H, Tang F, Zang Y, Hu D (2012) Combined structural and resting-state functional MRI analysis of sexual dimorphism in the young adult human brain: an MVPA approach. Neuroimage 61:931–940PubMedCrossRefGoogle Scholar
  98. Warwick JM, Carey P, Jordaan GP, Dupont P, Stein DJ (2008) Resting brain perfusion in social anxiety disorder: a voxel-wise whole brain comparison with healthy control subjects. Prog Neuropsychopharmacol Biol Psychiatry 32:1251–1256PubMedCrossRefGoogle Scholar
  99. Wee CY, Yap PT, Li W, Denny K, Browndyke JN, Potter GG, Welsh-Bohmer KA, Wang L, Shen D (2011) Enriched white matter connectivity networks for accurate identification of MCI patients. Neuroimage 54:1812–1822PubMedCentralPubMedCrossRefGoogle Scholar
  100. Wee CY, Yap PT, Zhang D, Wang L, Shen D (2013) Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification. Brain Struct Funct. doi: 10.1007/s00429-013-0524-8
  101. Yu C, Liu Y, Li J, Zhou Y, Wang K, Tian L, Qin W, Jiang T, Li K (2008) Altered functional connectivity of primary visual cortex in early blindness. Hum Brain Mapp 29:533–543PubMedCrossRefGoogle Scholar
  102. Zahn R, Moll J, Krueger F, Huey ED, Garrido G, Grafman J (2007) Social concepts are represented in the superior anterior temporal cortex. Proc Natl Acad Sci USA 104:6430–6435PubMedCentralPubMedCrossRefGoogle Scholar
  103. Zalesky A, Fornito A, Harding IH, Cocchi L, Yucel M, Pantelis C, Bullmore ET (2010) Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage 50:970–983PubMedCrossRefGoogle Scholar
  104. Zhang D, Wang Y, Zhou L, Yuan H, Shen D (2011a) Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55:856–867PubMedCentralPubMedCrossRefGoogle Scholar
  105. Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, Gong Q (2011b) Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry 70:334–342PubMedCrossRefGoogle Scholar
  106. Zhang Z, Liao W, Chen H, Mantini D, Ding JR, Xu Q, Wang Z, Yuan C, Chen G, Jiao Q, Lu G (2011c) Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain 134:2912–2928PubMedCrossRefGoogle Scholar
  107. Zhou B, Liu Y, Zhang Z, An N, Yao H, Wang P, Wang L, Zhang X, Jiang T (2013) Impaired functional connectivity of the thalamus in Alzheimer’s disease and mild cognitive impairment: a resting-state fMRI study. Curr Alzheimer Res 10:754–766Google Scholar
  108. Zhu CZ, Zang YF, Cao QJ, Yan CG, He Y, Jiang TZ, Sui MQ, Wang YF (2008) Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder. Neuroimage 40:110–120PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Feng Liu
    • 1
  • Wenbin Guo
    • 2
  • Jean-Paul Fouche
    • 3
    • 4
    • 5
  • Yifeng Wang
    • 1
  • Wenqin Wang
    • 6
  • Jurong Ding
    • 1
  • Ling Zeng
    • 1
  • Changjian Qiu
    • 7
  • Qiyong Gong
    • 8
  • Wei Zhang
    • 7
  • Huafu Chen
    • 1
    Email author
  1. 1.Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.Mental Health Center, The First Affiliated HospitalGuangxi Medical UniversityNanningPeople’s Republic of China
  3. 3.Department of PsychiatryUniversity of Cape TownCape TownSouth Africa
  4. 4.Department of Human BiologyUniversity of Cape TownCape TownSouth Africa
  5. 5.Department of PsychiatryUniversity of StellenboschCape TownSouth Africa
  6. 6.School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  7. 7.Department of PsychiatryWest China Hospital of Sichuan UniversityChengduPeople’s Republic of China
  8. 8.Department of Radiology, Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduPeople’s Republic of China

Personalised recommendations