Skip to main content
Log in

The E3 ubiquitin ligase Mycbp2 genetically interacts with Robo2 to modulate axon guidance in the mouse olfactory system

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The E3 ubiquitin ligase Mycbp2 and it homologues play an important role in axon guidance and synaptogenesis in Drosophila, Caenorhabditis elegans, zebrafish and mouse. Despite this conserved function, the molecular and cellular basis of Mycbp2-dependent axon guidance remains largely unclear. We have examined here the effect of the loss-of-MYCBP2 function on the topography of the olfactory sensory neuron projection from the nasal cavity to the olfactory bulb in mice. A subpopulation of olfactory sensory axons failed to project to the dorsal surface of the olfactory bulb causing abnormal topography in this neural pathway. These defects were similar to the olfactory bulb phenotype in loss-of-ROBO2 function mice. While mice heterozygous for either Mycbp2 or Robo2 were normal, mice double heterozygous for these two genes produced severe defects in the olfactory system. Therefore, Mycbp2 and Robo2 were found to cooperate within a genetic network that has profound effects on axon guidance. The Mycbp2 phenotype could be partly explained by aberrant patterning of olfactory sensory neurons residing in the dorsal compartment of the nasal cavity. Some of these neurons fail to appropriately express Robo2 which is consistent with their aberrant projection to the ventral olfactory bulb. These results provide the first evidence linking an ubiquitin ligase to an axon guidance receptor during pathfinding in the developing mammalian nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akins MR, Greer CA (2006) Axon behavior in the olfactory nerve reflects the involvement of catenin-cadherin mediated adhesion. J Comp Neurol 499(6):979–989

    Article  CAS  PubMed  Google Scholar 

  • Au WW, Treloar HB, Greer CA (2002) Sublaminar organization of the mouse olfactory bulb nerve layer. J Comp Neurol 446(1):68–80

    Article  PubMed  Google Scholar 

  • Berghard A, Hagglund AC, Bohm S, Carlsson L (2012) Lhx2-dependent specification of olfactory sensory neurons is required for successful integration of olfactory, vomeronasal, and GnRH neurons. Faseb J 26(8):3464–3472

    Article  CAS  PubMed  Google Scholar 

  • Bloom AJ, Miller BR, Sanes JR, DiAntonio A (2007) The requirement for Phr1 in CNS axon tract formation reveals the corticostriatal boundary as a choice point for cortical axons. Genes Dev 21(20):2593–2606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borrell V, Cardenas A, Ciceri G, Galceran J, Flames N, Pla R, Nobrega-Pereira S, Garcia-Frigola C, Peregrin S, Zhao Z et al (2012) Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron 76(2):338–352

    Article  CAS  PubMed  Google Scholar 

  • Burgess RW, Peterson KA, Johnson MJ, Roix JJ, Welsh IC, O’Brien TP (2004) Evidence for a conserved function in synapse formation reveals Phr1 as a candidate gene for respiratory failure in newborn mice. Mol Cell Biol 24(3):1096–1105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cho JH, Lepine M, Andrews W, Parnavelas J, Cloutier JF (2007) Requirement for slit-1 and robo-2 in zonal segregation of olfactory sensory neuron axons in the main olfactory bulb. J Neurosci 27(34):9094–9104

    Article  CAS  PubMed  Google Scholar 

  • Cho JH, Prince JEA, Cutforth T, Cloutier JF (2011) The pattern of glomerular map formation defines responsiveness to aversive odorants in mice. J Neurosci 31(21):7920–7926

    Article  CAS  PubMed  Google Scholar 

  • Cho JH, Kam JW, Cloutier JF (2012) Slits and Robo-2 regulate the coalescence of subsets of olfactory sensory neuron axons within the ventral region of the olfactory bulb. Dev Biol 371(2):269–279

    Article  CAS  PubMed  Google Scholar 

  • Culican SM, Bloom AJ, Weiner JA, DiAntonio A (2009) Phr1 regulates retinogeniculate targeting independent of activity and ephrin-A signalling. Mol Cell Neurosci 41(3):304–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Danciger E, Mettling C, Vidal M, Morris R, Margolis F (1989) Olfactory marker protein gene—its structure and olfactory neuron-specific expression in transgenic mice. Proc Natl Acad Sci USA 86(21):8565–8569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ekberg JAK, Amaya D, Chehrehasa F, Lineburg K, Claxton C, Windus LCE, Key B, Mackay-Sim A, St John JA (2011) OMP-ZsGreen fluorescent protein transgenic mice for visualisation of olfactory sensory neurons in vivo and in vitro. J Neurosci Methods 196(1):88–98

    Article  CAS  PubMed  Google Scholar 

  • Engle EC (2010) Human genetic disorders of axon guidance, Cold Spring Harbor Perspectives in Biology 2(3)

  • Gussing F, Bohm S (2004) NQO1 activity in the main and the accessory olfactory systems correlates with the zonal topography of projection maps. Eur J Neurosci 19(9):2511–2518

    Article  PubMed  Google Scholar 

  • Hagarman JA, O’Brien TP (2009) An essential gene mutagenesis screen across the highly conserved piebald deletion region of mouse chromosome 14. Genesis 47(6):392–403

    Article  CAS  PubMed  Google Scholar 

  • Hicke L (2001) Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2(3):195–201

    Article  CAS  PubMed  Google Scholar 

  • Hirata T, Nakazawa M, Yoshihara S, Miyachi H, Kitamura K, Yoshihara Y, Hibi M (2006) Zinc-finger gene Fez in the olfactory sensory neurons regulates development of the olfactory bulb non-cell-autonomously. Development 133(8):1433–1443

    Article  CAS  PubMed  Google Scholar 

  • Holland S, Coste O, Zhang DD, Pierre SC, Geisslinger G, Scholich K (2011) The ubiquitin ligase MYCBP2 regulates transient receptor potential vanilloid receptor 1 (TRPV1) internalization through inhibition of p38 MAPK signaling. J Biol Chem 286(5):3671–3680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawabe H, Brose N (2011) The role of ubiquitination in nerve cell development. Nat Rev Neurosci 12(5):251–268

    Article  CAS  PubMed  Google Scholar 

  • Key B, Akeson RA (1993) Distinct subsets of sensory olfactory neurons in mouse: possible role in the formation of the mosaic olfactory projection. J Comp Neurol 335(3):355–368

    Article  CAS  PubMed  Google Scholar 

  • Key B, St John J (2002) Axon navigation in the mammalian primary olfactory pathway: where to next? Chem Senses 27(3):245–260

    Article  CAS  PubMed  Google Scholar 

  • Lehman NL (2009) The ubiquitin proteasome system in neuropathology. Acta Neuropathol 118(3):329–347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li HC, Kulkarni G, Wadsworth WG (2008a) RPM-1, a Caenorhabditis elegans protein that functions in presynaptic differentiation, negatively regulates axon outgrowth by controlling SAX-3/robo and UNC-5/UNC5 activity. J Neurosci 28(14):3595–3603

    Article  CAS  PubMed  Google Scholar 

  • Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, Chanda SK, Batalov S, Joazeiro CAP (2008b) Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. Plos One 3(1):e1487

    Article  PubMed Central  PubMed  Google Scholar 

  • Lipscomb BW, Treloar HB, Klenoff J, Greer CA (2003) Cell surface carbohydrates and glomerular targeting of olfactory sensory neuron axons in the mouse. J Comp Neurol 467(1):22–31

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bendito G, Flames N, Ma L, Fouquet C, Di Meglio T, Chedotal A, Tessier-Lavigne M, Marin O (2007) Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain. J Neurosci 27(13):3395–3407

    Article  CAS  PubMed  Google Scholar 

  • Lu WN, van Eerde AM, Fan XP, Quintero-Rivera F, Kulkarni S, Ferguson H, Kim HG, Fan YL, Xi QC, Li QG et al (2007) Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet 80(4):616–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R (1996) Visualizing an olfactory sensory map. Cell 87(4):675–686

    Article  CAS  PubMed  Google Scholar 

  • Myat A, Henry P, McCabe V, Flintoft L, Rotin D, Tear G (2002) Drosophila Nedd4, a ubiquitin ligase, is recruited by commissureless to control cell surface levels of the roundabout receptor. Neuron 35(3):447–459

    Article  CAS  PubMed  Google Scholar 

  • Nguyen-Ba-Charvet KT, Di Meglio T, Fouquet C, Chedotal A (2008) Robos and slits control the pathfinding and targeting of mouse olfactory sensory axons. J Neurosci 28(16):4244–4249

    Article  CAS  PubMed  Google Scholar 

  • Po MD, Hwang C, Zhen M (2010) PHRs: bridging axon guidance, outgrowth and synapse development. Curr Opin Neurobiol 20(1):100–107

    Article  CAS  PubMed  Google Scholar 

  • Simmons DG, Rawn S, Davies A, Hughes M, Cross JC (2008) Spatial and temporal expression of the 23 murine prolactin/placental lactogen-related genes is not associated with their position in the locus. Bmc Genomics 9:352

    Article  PubMed Central  PubMed  Google Scholar 

  • Sun W, Kim H, Moon Y (2010) Control of neuronal migration through rostral migration stream in mice. Anat Cell Biol 43(4):269–279

    Article  PubMed Central  PubMed  Google Scholar 

  • Takeuchi H, Inokuchi K, Aoki M, Suto F, Tsuboi A, Matsuda I, Suzuki M, Aiba A, Serizawa S, Yoshihara Y et al (2010) Sequential arrival and graded secretion of Sema3F by Olfactory neuron axons specify map topography at the bulb. Cell 141(6):1056–1067

    Article  CAS  PubMed  Google Scholar 

  • Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19(1):94–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Treloar HB, Gabeau D, Yoshihara Y, Mori K, Greer CA (2003) Inverse expression of olfactory cell adhesion molecule in a subset of olfactory axons and a subset of mitral/tufted cells in the developing rat main olfactory bulb. J Comp Neurol 458(4):389–403

    Article  CAS  PubMed  Google Scholar 

  • Windus LCE, Claxton C, Allen CL, Key B, St John JA (2007) Motile membrane protrusions regulate cell–cell adhesion and migration of olfactory ensheathing glia. Glia 55(16):1708–1719

    Article  PubMed  Google Scholar 

  • Yuasa-Kawada J, Kinoshita-Kawada M, Wu G, Rao Y, Wu JY (2009) Midline crossing and slit responsiveness of commissural axons require USP33. Nat Neurosci 12(9):1087–1089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Julie Conway for taking care of our animal colonies, Timothy O’Brien for providing the Mycbp2274−4 and the Mycbp215DttMb mice, Aaron Diantonio for the Mycbp2∆8−9 mice, William Andrews for the Robo2Del5 mice and Peter Mombaerts for the P2-IRES-Tau-LacZ mice. This work was supported by grants to BK from the National Health and Medical Research Council of Australia.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Key.

Additional information

B. Key and A. Beverdam equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, G., Key, B. & Beverdam, A. The E3 ubiquitin ligase Mycbp2 genetically interacts with Robo2 to modulate axon guidance in the mouse olfactory system. Brain Struct Funct 219, 861–874 (2014). https://doi.org/10.1007/s00429-013-0540-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0540-8

Keywords

Navigation