Advertisement

Brain Structure and Function

, Volume 219, Issue 1, pp 303–321 | Cite as

Musculotopic organization of the motor neurons supplying the mouse hindlimb muscles: a quantitative study using Fluoro-Gold retrograde tracing

  • Tímea Bácskai
  • Zoltán Rusznák
  • George Paxinos
  • Charles Watson
Original Article

Abstract

We have mapped the motor neurons (MNs) supplying the major hindlimb muscles of transgenic (C57/BL6J-ChAT-EGFP) and wild-type (C57/BL6J) mice. The fluorescent retrograde tracer Fluoro-Gold was injected into 19 hindlimb muscles. Consecutive transverse spinal cord sections were harvested, the MNs counted, and the MN columns reconstructed in 3D. Three longitudinal MN columns were identified. The dorsolateral column extends from L4 to L6 and consists of MNs innervating the crural muscles and the foot. The ventrolateral column extends from L1 to L6 and accommodates MNs supplying the iliopsoas, gluteal, and quadriceps femoris muscles. The middle part of the ventral horn hosts the central MN column, which extends between L2 and L6 and consists of MNs for the thigh adductor, hamstring, and quadratus femoris muscles. Within these longitudinal columns, the arrangement of the different MN groups reflects their somatotopic organization. MNs innervating muscles developing from the dorsal (e.g., quadriceps) and ventral muscle mass (e.g., hamstring) are situated in the lateral and medial part of the ventral gray, respectively. MN pools belonging to proximal muscles (e.g., quadratus femoris and iliopsoas) are situated ventral to those supplying more distal ones (e.g., plantar muscles). Finally, MNs innervating flexors (e.g., posterior crural muscles) are more medial than those belonging to extensors of the same joint (e.g., anterior crural muscles). These data extend and modify the MN maps in the recently published atlas of the mouse spinal cord and may help when assessing neuronal loss associated with MN diseases.

Keywords

Hindlimb Spinal cord Motor neuron Retrograde tracing Musculotopic organization 3D modeling 

Abbreviations

Ad9

Adductor MNs of lamina 9

ALS

Amyotrophic lateral sclerosis

Ant

Anterior

Ax9

Axial MNs of lamina 9

BAC

Bacterial artificial chromosome

CC

Central canal

ChAT

Choline acetyltransferase

CEx9

Crural extensor MNs of lamina 9

CFl9

Crural flexor MNs of lamina 9

Cr9

Cremaster MNs of lamina 9

CV

Coefficient of variation

Dig

Digitorum

DL

Dorsolateral

EGFP

Enhanced green fluorescent protein

ExA9

External anal sphincter MNs of lamina 9

Ext

Extensor

ExU9

External urethral sphincter MNs of lamina 9

FG

Fluoro-Gold

FUS/TLS

Fused in sarcoma/translocated in liposarcoma

Gl9

Gluteal MNs of lamina 9

Hm9

Hamstring MNs of lamina 9

HRP

Horseradish peroxidase

IML

Intermediolateral nucleus

Lat

Lateral

LDCom

Lumbar dorsal commissural nucleus

MN

Motor neuron

Pes9

Foot MNs of lamina 9

Post

Posterior

Q9

Quadriceps MNs of lamina 9

QL9

Quadratus lumborum MNs of lamina 9

SDCom

Sacral dorsal commissural nucleus

SOD1

Superoxide dismutase 1

Spf

Superficial

TDP-43

Transactivating response element DNA binding protein-43

VL

Ventrolateral

Notes

Acknowledgments

This study was supported by an NHMRC (National Health & Medical Research Council) Australia Fellowship Grant awarded to Dr George Paxinos (Grant #568605).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

429_2012_501_MOESM1_ESM.tif (3.3 mb)
Supplementary material 1 (TIFF 3335 kb)
429_2012_501_MOESM2_ESM.tif (3.1 mb)
Supplementary material 2 (TIFF 3178 kb)
429_2012_501_MOESM3_ESM.tif (3.2 mb)
Supplementary material 3 (TIFF 3254 kb)
429_2012_501_MOESM4_ESM.tif (4 mb)
Supplementary material 4 (TIFF 4127 kb)
429_2012_501_MOESM5_ESM.tif (9.9 mb)
Supplementary material 5 (TIFF 10162 kb)
429_2012_501_MOESM6_ESM.tif (3.2 mb)
Supplementary material 6 (TIFF 3264 kb)
429_2012_501_MOESM7_ESM.tif (3.1 mb)
Supplementary material 7 (TIFF 3218 kb)
429_2012_501_MOESM8_ESM.tif (3.4 mb)
Supplementary material 8 (TIFF 3517 kb)
429_2012_501_MOESM9_ESM.tif (4.6 mb)
Supplementary material 9 (TIFF 4706 kb)

References

  1. Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247PubMedCrossRefGoogle Scholar
  2. Ashwell KW, Watson CRR (1983) The development of facial motoneurons in the mouse—neuronal death and the innervation of the facial muscles. J Embryol Exp Morphol 77:117–141PubMedGoogle Scholar
  3. Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitrophanous KA, Kingsman SM, Carmeliet P, Mazarakis ND (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429:413–417PubMedCrossRefGoogle Scholar
  4. Bachurin SO, Shelkovnikova TA, Ustyugov AA, Peters O, Khritankova I, Afanasieva MA, Tarasova TV, Alentov II, Buchman VL, Ninkina NN (2011) Dimebon slows progression of proteinopathy in γ-synuclein transgenic mice. Neurotox Res 22:33–42PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bácskai T, Fu Y, Sengul G, Rusznák Z, Paxinos G, Watson C (2012) Musculotopic organization of the motor neurons supplying forelimb and shoulder girdle muscles in the mouse. Brain Struct Funct (Epub ahead of print)Google Scholar
  6. Beckman JS, Carson M, Smith CD, Koppenol WH (1993) ALS, SOD and peroxynitrite. Nature 364:584PubMedCrossRefGoogle Scholar
  7. Bensimon G, Lacomblez L, Meininger V, ALS/Riluzole Study Group (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med 330:585–591PubMedCrossRefGoogle Scholar
  8. Boillée S, Vande Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59PubMedCrossRefGoogle Scholar
  9. Chi L, Ke Y, Luo C, Li B, Gozal D, Kalyanaraman B, Liu R (2006) Motor neuron degeneration promotes neural progenitor cell proliferation, migration, and neurogenesis in the spinal cords of amyotrophic lateral sclerosis mice. Stem Cells 24:34–43PubMedCentralPubMedCrossRefGoogle Scholar
  10. Crouch JE (1969) Text-atlas of cat anatomy. Lea and Febiger, PhiladelphiaGoogle Scholar
  11. Cudkowicz M, Bozik ME, Ingersoll EW, Miller R, Mitsumoto H, Shefner J, Moore DH, Schoenfeld D, Mather JL, Archibald D, Sullivan M, Amburgey C, Moritz J, Gribkoff VK (2011) The effects of dexpramipexole (KNS-760704) in individuals with amyotrophic lateral sclerosis. Nat Med 17:1652–1656PubMedCrossRefGoogle Scholar
  12. de Hemptinne I, Boucherie C, Pochet R, Bantubungi K, Schiffmann SN, Maloteaux JM, Hermans E (2006) Unilateral induction of progenitors in the spinal cord of hSOD1 (G93A) transgenic rats correlates with an asymmetrical hind limb paralysis. Neurosci Lett 401:25–29PubMedCrossRefGoogle Scholar
  13. Emsley JG, Lu X, Hagg T (2001) Retrograde tracing techniques influence reported cell death rates of adult rat nigrostriatial neurons. Exp Neurol 168:425–433PubMedCrossRefGoogle Scholar
  14. Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, Castellano-Sanchez A, Khan J, Polak MA, Glass JD (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185:232–240PubMedCrossRefGoogle Scholar
  15. Franklin TR, Druhan JP (2000) The retrograde tracer fluoro-gold interferes with the expression of fos-related antigens. J Neurosci Methods 98:1–8PubMedCrossRefGoogle Scholar
  16. Frey D, Schneider C, Xu L, Borg J, Spooren W, Caroni P (2000) Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J Neurosci 20:2534–2542PubMedGoogle Scholar
  17. Garrett WT, McBride RL, Williams JK, Feringa ER (1991) Fluoro-Gold’s toxicity makes it inferior to True Blue for long-term studies of dorsal root ganglion neurons and motoneurons. Neurosci Lett 128:137–139PubMedCrossRefGoogle Scholar
  18. Green EC (1959) Anatomy of the rat. Hafner, New YorkGoogle Scholar
  19. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, Zhai P, Sufit RL, Siddique T (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775PubMedCrossRefGoogle Scholar
  20. Haenggeli C, Kato AC (2002) Rapid and reproducible methods using fluorogold for labelling a subpopulation of cervical motoneurons: application in the wobbler mouse. J Neurosci Methods 116:119–124PubMedCrossRefGoogle Scholar
  21. Hanyu N, Oguchi K, Yanagisawa N, Tsukagoshi H (1982) Degeneration and regeneration of ventral root motor fibers in amyotrophic lateral sclerosis. Morphometric studies of cervical ventral roots. J Neurol Sci 55:99–115PubMedCrossRefGoogle Scholar
  22. Hebel R, Stromberg MW (1976) Anatomy of the laboratory rat. Williams & Wilkins, BaltimoreGoogle Scholar
  23. Joyce PI, Fratta P, Fisher EMC, Acevedo-Arozena A (2011) SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments. Mamm Genome 22:420–448PubMedCrossRefGoogle Scholar
  24. Kaiser O (1891) Die Functionen der Ganglienzellen des Halsmarkes. HaagGoogle Scholar
  25. Kong J, Xu Z (1998) Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci 18:3241–3250PubMedGoogle Scholar
  26. Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, Valdmanis P, Rouleau GA, Hosler BA, Cortelli P, de Jong PJ, Yoshinaga Y, Haines JL, Pericak-Vance MA, Yan J, Ticozzi N, Siddique T, McKenna-Yasek D, Sapp PC, Horvitz HR, Landers JE, Brown RH Jr (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 27:1205–1208CrossRefGoogle Scholar
  27. Lance Jones C (1979) The morphogenesis of the thigh of the mouse with special reference to tetrapod muscle homologies. J Morphol 162:275–310CrossRefGoogle Scholar
  28. Mackenzie IR, Rademakers R, Neumann M (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9:995–1007PubMedCrossRefGoogle Scholar
  29. McClellan AD, Zhang L, Palmer R (2006) Flurogold labeling of descending brain neurons in larval lamprey does not cause cell death. Neurosci Lett 401:119–124PubMedCrossRefGoogle Scholar
  30. McHanwell S, Biscoe TJ (1981a) The localization of motor neurons supplying the hindlimb muscles of the mouse. Philos Trans R Soc Lond B Biol Sci 293:477–508PubMedCrossRefGoogle Scholar
  31. McHanwell S, Biscoe TJ (1981b) The sizes of motoneurons supplying hindlimb muscles in the mouse. Proc R Soc Lond B 213:201–216PubMedCrossRefGoogle Scholar
  32. McHanwell S, Watson C (2009) Localization of motoneurons in the spinal cord. In: Watson C, Paxinos G, Kayalioglu G (eds) Spinal cord. A Christopher and Dana Reeve Foundation Text and Atlas. Elsevier, San Diego, pp 94–114Google Scholar
  33. McLaren A, Michie D (1954) Factors affecting vertebral variation in mice. 1. Variation within an inbred strain. J Embryol Exp Morphol 2:149–160Google Scholar
  34. McLaren A, Michie D (1958) Factors affecting vertebral variation in mice. 4. Experimental proof of the uterine basis of a maternal effect. J Embryol Exp Morphol 6:645–659PubMedGoogle Scholar
  35. Miller TM, Kaspar BK, Kops GJ, Yamanaka K, Christian LJ, Gage FH, Cleveland DW (2005) Virus-delivered small RNA silencing sustains strength in amyotrophic lateral sclerosis. Ann Neurol 57:773–776PubMedCentralPubMedCrossRefGoogle Scholar
  36. Mohajeri MH, Figlewicz DA, Bohn MC (1998) Selective loss of α motoneurons innervating the medial gastrocnemium muscle in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 150:329–336PubMedCrossRefGoogle Scholar
  37. Nagano I, Ilieva H, Shiote M, Murakami T, Yokoyama M, Shoji M, Abe K (2005a) Therapeutic benefit of intrathecal injection of insulin-like growth factor-1 in a mouse model of amyotrophic lateral sclerosis. J Neurol Sci 235:61–68PubMedCrossRefGoogle Scholar
  38. Nagano I, Shiote M, Murakami T, Kamada H, Hamakawa Y, Matsubara E, Yokoyama M, Moritaz K, Shoji M, Abe K (2005b) Beneficial effects of intrathecal IGF-1 administration in patients with amyotrophic lateral sclerosis. Neurol Res 27:768–772PubMedCrossRefGoogle Scholar
  39. Naumann T, Härtig W, Frotscher M (2000) Retrograde tracing with Fluoro-Gold: different methods of tracer detection at the ultrastructural level and neurodegenerative changes of back-filled neurons in long-term studies. J Neurosci Methods 103:11–21PubMedCrossRefGoogle Scholar
  40. Nicolopoulos-Stournas S, Iles JF (1983) Motor neuron columns in the lumbar spinal cord of the rat. J Comp Neurol 217:27–85Google Scholar
  41. Orrell RW (2010) Motor neuron disease: systematic reviews of treatment for ALS and SMA. Br Med Bull 93:145–159PubMedCrossRefGoogle Scholar
  42. Portal JJ, Corio M, Viala D (1991) Localization of the lumbar pools of motoneurones which provide hindlimb muscles in the rabbit. Neurosci Lett 124:105–107PubMedCrossRefGoogle Scholar
  43. Pun S, Santos AF, Saxena S, Xu L, Caroni P (2006) Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci 9:408–419PubMedCrossRefGoogle Scholar
  44. Ralph GS, Radcliffe PA, Day DM, Carthy JM, Leroux MA, Lee DC, Wong LF, Bilsland LG, Greensmith L, Kingsman SM, Mitrophanous KA, Mazarakis ND, Azzouz M (2005) Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 11:429–433PubMedCrossRefGoogle Scholar
  45. Rigaud M, Gemes G, Barabas ME, Chernoff DI, Abram SE, Stucky CL, Hogan QH (2008) Species and strain differences in rodent sciatic nerve anatomy: implications for studies of neuropathic pain. Pain 136:188–201PubMedCentralPubMedCrossRefGoogle Scholar
  46. Romanes GJ (1941) The development and significance of the cell columns in the ventral horn of the cervical and upper thoracic spinal cord of the rabbit. J Anat 76:112–130PubMedGoogle Scholar
  47. Romanes GJ (1951) The motor cell columns of the lumbosacral spinal cord of the cat. J Comp Neurol 94:313–363PubMedCrossRefGoogle Scholar
  48. Romanes GJ (1964) The motor pools of the spinal cord. Progr Brain Res 11:93–119CrossRefGoogle Scholar
  49. Routal RV, Pal GP (1999) A study of motoneurone groups and motor columns of the human spinal cord. J Anat 195:211–234PubMedCrossRefGoogle Scholar
  50. Ryan JM, Cushman J, Jordan B, Samuels A, Frazer H, Baier C (1998) Topographic position of forelimb motoneuron pools is conserved in vertebrate evolution. Brain Behav Evol 51:90–99PubMedCrossRefGoogle Scholar
  51. Sasabe J, Miyoshib Y, Suzuki M, Mita M, Konno R, Matsuoka M, Hamase K, Aiso S (2012) D-Amino acid oxidase controls motoneuron degeneration through d-serine. Proc Natl Acad Sci USA 109:627–632PubMedCrossRefGoogle Scholar
  52. Schmued LC, Fallon JH (1986) Fluoro-Gold: a new fluorescent retrograde axonal tracer with numerous unique properties. Brain Res 377:147–154PubMedCrossRefGoogle Scholar
  53. Sengul G, Tanaka I, Paxinos G, Watson C (2012) Atlas of spinal cords of the rat, mouse, marmoset, macaque, and human. Elsevier Academic Press, San DiegoGoogle Scholar
  54. Sherrington CS (1910) Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol 40:28–121PubMedGoogle Scholar
  55. Sobue G, Hashizume Y, Mitsuma T, Takahashi A (1987) Size-dependent myelinated fiber loss in the corticospinal tract in Shy–Drager syndrome and amyotrophic lateral sclerosis. Neurology 37:529–532PubMedCrossRefGoogle Scholar
  56. Traynor BJ, Brujin L, Conwit R, Beal F, O’Neill G, Fagan SC, Cudkowicz ME (2006) Neuroprotective agents for clinical trials in ALS: a systematic assessment. Neurology 67:20–27PubMedCrossRefGoogle Scholar
  57. Vanderhorst VGJM, Holstege G (1997) Organization of lumbosacral motoneuronal cell groups innervating hindlimb, pelvic floor, and axial muscles in the cat. J Comp Neurol 382:46–76PubMedCrossRefGoogle Scholar
  58. Waldeyer W (1888) Das Gorilla-Rückenmark. Abh der Königlichen Akad der Wissensch Berlin Phys-Math Classe, Abh III:1–147Google Scholar
  59. Watson CRR, Sakai S, Armstrong W (1982) The organization of the facial nucleus in the rat. Brain Behav Evol 20:19–28PubMedCrossRefGoogle Scholar
  60. Watson C, Paxinos G, Kayalioglu G, Heise C (2009a) Atlas of the mouse spinal cord. In: Watson C, Paxinos G, Kayalioglu G (eds) Spinal cord. A Christopher and Dana Reeve Foundation Text and Atlas. Elsevier, San Diego, pp 308–379Google Scholar
  61. Watson C, Paxinos G, Kayalioglu G, Heise C (2009b) Atlas of the rat spinal cord. In: Watson C, Paxinos G, Kayalioglu G (eds) Spinal cord. A Christopher and Dana Reeve Foundation Text and Atlas. Elsevier, San Diego, pp 238–306Google Scholar
  62. Wiedau-Pazos M, Goto JJ, Rabizadeh S, Gralla EB, Roe JA, Lee MK, Valentine JS, Bredesen DE (1996) Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271:515–518PubMedCrossRefGoogle Scholar
  63. Yan J, Aizawa Y, Hitomi J (2007) Localization of motoneurons that extend axons through the ventral rami of cervical nerves to innervate the trapezius muscle: a study using fluorescent dyes and 3D reconstruction method. Clin Anat 20:41–47PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tímea Bácskai
    • 1
  • Zoltán Rusznák
    • 1
  • George Paxinos
    • 1
    • 2
  • Charles Watson
    • 1
    • 3
  1. 1.Neuroscience Research AustraliaSydneyAustralia
  2. 2.The University of New South WalesSydneyAustralia
  3. 3.Faculty of Health SciencesCurtin UniversityPerthAustralia

Personalised recommendations