Brain Structure and Function

, Volume 219, Issue 1, pp 231–253 | Cite as

Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches

  • Ivica Kostović
  • Nataša Jovanov-Milošević
  • Milan Radoš
  • Goran Sedmak
  • Vesna Benjak
  • Mirna Kostović-Srzentić
  • Lana Vasung
  • Marko Čuljat
  • Marko Radoš
  • Petra Hüppi
  • Miloš Judaš
Original Article


We analyzed the developmental history of the subplate and related cellular compartments of the prenatal and early postnatal human cerebrum by combining postmortem histological analysis with in vivo MRI. Histological analysis was performed on 21 postmortem brains (age range: 26 postconceptional weeks to 6.5 years) using Nissl staining, AChE-histochemistry, PAS–Alcian blue histochemistry, Gallyas’ silver impregnation, and immunocytochemistry for MAP2, synaptophysin, neurofilament, chondroitin sulfate, fibronectin, and myelin basic protein. The histological findings were correlated with in vivo MRI findings obtained in 30 age-matched fetuses, infants, and children. We analyzed developmental reorganization of major cellular (cell bodies, growing axons) and extracellular (extracellular matrix) components of the subplate and the developing cortex/white matter interface. We found that perinatal and postnatal reorganization of these tissue components is protracted (extending into the second year of life) and characterized by well-delineated, transient and previously undescribed structural and molecular changes at the cortex/white matter interface. The findings of this study are clinically relevant because they may inform and guide a proper interpretation of highly dynamic and hitherto puzzling changes of cortical thickness and cortical/white matter interface as described in current in vivo MRI studies.


Extracellular matrix Fiber-architectonics Cortex–white matter interface Developmental reorganization Gyral development Cortico-cortical connectivity 



This work has been supported by Croatian Ministry of Science, Education and Sport Grants No. 108-1081870-1876 (to I.K.), No. 108-1081870-1878 (to M.J.), and Unity Through Knowledge Fund (UKF) grant (Director: I. Kostović). Authors gratefully acknowledge the technical assistance of Zdenka Cmuk, Danica Budinšćak, Božica Popović and Maja Horvat.


  1. Allendoerfer KL, Shatz CJ (1994) The subplate, a transient neocortical structure—its role in the development of connections between thalamus and cortex. Annu Rev Neurosci 17:185–218PubMedGoogle Scholar
  2. Ang ESBC, Haydar TF, Gluncic V, Rakic P (2003) Four-dimensional migratory coordinates of GABAergic interneurons in the developing mouse cortex. J Neurosci 23:5805–5815PubMedGoogle Scholar
  3. Arnold F (1838) Untersuchungen im Gebiete der Anatomie und Physiologie mit besonderer Hinsicht auf seine anatomischen Tafeln. Erstes Bändchen. Bemerkungen über den Bau des Hirns und Rückenmarks nebst Beiträgen zur Physiologie des zehnten und eilften Hirnnerven, mehrern kritischen Mittheilungen so wie verschiedenen pathologischen und anatomischen Beobachtungen. Verlag von S. Höhr, ZürichGoogle Scholar
  4. Ayoub AE, Kostovic I (2009) New horizons for the subplate zone and its pioneering neurons. Cereb Cortex 19:1705–1707PubMedGoogle Scholar
  5. Bayatti N, Moss JA, Sun L, Ambrose P, Ward JFH, Lindsay S, Clowry GJ (2008) A molecular neuroanatomical study of the developing human neocortex from 8 to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone. Cereb Cortex 18:1536–1548PubMedGoogle Scholar
  6. Bicknese AR, Sheppard AM, Oleary DDM, Pearlman AL (1994) Thalamocortical axons extend along a chondroitin sulfate proteoglycan-enriched pathway coincident with the neocortical subplate and distinct from the efferent path. J Neurosci 14:3500–3510PubMedGoogle Scholar
  7. Brodmann K (1914) Physiologie des Gehirns. Die anatomische Feldertopographie der Grosshirnoberflache. In: Krause F (ed) Die Allgemeine Chirurgie der Gehirnkrankheiten. Ferdinand Enke, Stuttgart, pp 99–112Google Scholar
  8. Burkhalter A, Bernardo KL, Charles V (1993) Development of local circuits in human visual-cortex. J Neurosci 13:1916–1931PubMedGoogle Scholar
  9. Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9:110–122PubMedGoogle Scholar
  10. Chen CH, Gutierrez ED, Thompson W, Panizzon MS, Jernigan TL, Eyler LT, Fennema-Notestine C, Jak AJ, Neale MC, Franz CE, Lyons MJ, Grant MD, Fischl B, Seidman LJ, Tsuang MT, Kremen WS, Dale AM (2012) Hierarchical genetic organization of human cortical surface area. Science 335:1634–1636PubMedCentralPubMedGoogle Scholar
  11. Corbett-Detig J, Habas PA, Scott JA, Kim K, Rajagopalan V, McQuillen PS, Barkovich AJ, Glenn OA, Studholme C (2011) 3D global and regional patterns of human fetal subplate growth determined in utero. Brain Struct Funct 215:255–263PubMedCentralPubMedGoogle Scholar
  12. Counsell SJ, Allsop JM, Harrison MC, Larkman DJ, Kennea NL, Kapellou O, Cowan FM, Hajnal JV, Edwards AD, Rutherford MA (2003) Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 112:1–7PubMedGoogle Scholar
  13. Culling CFA (1963) Handbook of histopathological techniques. Butterworth & Co, LondonGoogle Scholar
  14. Del Rio JA, Martinez A, Auladell C, Soriano E (2000) Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages. Cereb Cortex 10:784–801PubMedGoogle Scholar
  15. Delalle I, Evers P, Kostović I, Uylings HB (1997) Laminar distribution of neuropeptide Y-immunoreactive neurons in human prefrontal cortex during development. J Comp Neurol 379(4):515–522PubMedGoogle Scholar
  16. Dudink J, Buijs J, Govaert P, van Zwol AL, Conneman N, van Goudoever JB, Lequin M (2010) Diffusion tensor imaging of the cortical plate and subplate in very-low-birth-weight infants. Pediatr Radiol 40:1397–1404PubMedCentralPubMedGoogle Scholar
  17. Eastwood SL, Harrison PJ (2005) Interstitial white matter neuron density in the dorsolateral prefrontal cortex and parahippocampal gyrus in schizophrenia. Schizophr Res 79:181–188PubMedGoogle Scholar
  18. Flechsig P (1920) Anatomie des menschlichen Gehirns und Ruchenmarks auf myelogenetischer Grundlage. Thieme, LeipzigGoogle Scholar
  19. Fransson P, Aden U, Blennow M, Lagercrantz H (2011) The functional architecture of the infant brain as revealed by resting-state fMRI. Cereb Cortex 21:145–154PubMedGoogle Scholar
  20. Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1:203–209PubMedGoogle Scholar
  21. Ghosh A, Shatz CJ (1994) Segregation of geniculocortical afferents during the critical period—a role for subplate neurons. J Neurosci 14:3862–3880PubMedGoogle Scholar
  22. Goldman PS, Galkin TW (1978) Prenatal removal of frontal association cortex in fetal rhesus-monkey—anatomical and functional consequences in postnatal life. Brain Res 152:451–485PubMedGoogle Scholar
  23. Habas PA, Kim K, Corbett-Detig JM, Rousseau F, Glenn OA, Barkovich AJ, Studholme C (2010) A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation. Neuroimage 53:460–470PubMedCentralPubMedGoogle Scholar
  24. Hadders-Algra M (2007) Putative neural substrate of normal and abnormal general movements. Neurosci Biobehav Rev 31:1181–1190PubMedGoogle Scholar
  25. Hagmann P, Sporns O, Madan N, Cammoun L, Pienaar R, Wedeen VJ, Meuli R, Thiran JP, Grant PE (2010) White matter maturation reshapes structural connectivity in the late developing human brain. Proc Natl Acad Sci USA 107:19067–19072PubMedGoogle Scholar
  26. Hanganu IL, Kilb W, Luhmann HJ (2001) Spontaneous synaptic activity of subplate neurons in neonatal rat somatosensory cortex. Cereb Cortex 11:400–410PubMedGoogle Scholar
  27. Hanganu IL, Kilb W, Luhmann HJ (2002) Functional synaptic projections onto subplate neurons in neonatal rat somatosensory cortex. J Neurosci 22:7165–7176PubMedGoogle Scholar
  28. Hoerder-Suabedissen A, Molnar Z (2012) Molecular diversity of early-born subplate neurons. Cereb CortexGoogle Scholar
  29. Hoerder-Suabedissen A, Wang WZ, Lee S, Davies KE, Goffinet AM, Rakic S, Parnavelas J, Reim K, Nicolic M, Paulsen O, Molnar Z (2009) Novel markers reveal subpopulations of subplate neurons in the murine cerebral cortex. Cereb Cortex 19:1738–1750PubMedGoogle Scholar
  30. Hsu SM, Raine L, Fanger H (1981) The use of antiavidin antibody and avidin-biotin-peroxidase complex in immunoperoxidase technics. Am J Clin Pathol 75:816–821PubMedGoogle Scholar
  31. Huang H, Xue R, Zhang JY, Ren TB, Richards LJ, Yarowsky P, Miller MI, Mori S (2009) Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci 29:4263–4273PubMedCentralPubMedGoogle Scholar
  32. Huang H, Jeong T, Sedmak G, Pletikos M, Vasung L, Xu X, Yarowsky P, Richards LJ, Kostović I, Sestan N, Mori S (2012) Coupling diffusion imaging with histological and gene expression analysis to examine the dynamics of cortical area across the fetal period of human brain development. Cereb Cortex doi: 10.1093/cercor/bhs241
  33. Huppi PS, Murphy B, Maier SE, Zientara GP, Inder TE, Barnes PD, Kikinis R, Jolesz FA, Volpe JJ (2001) Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging. Pediatrics 107:455–460PubMedGoogle Scholar
  34. Innocenti GM, Price DJ (2005) Exuberance in the development of cortical networks. Nat Rev Neurosci 6:955–965PubMedGoogle Scholar
  35. Judaš M, Sestan N, Kostović I (1999) Nitrinergic neurons in the developing and adult human telencephalon: Transient and permanent patterns of expression in comparison to other mammals. Microsc Res Tech 45:401–419PubMedGoogle Scholar
  36. Judaš M, Milošević NJ, Rašin MR, Heffer-Lauc M, Kostović I (2003) Complex patterns and simple architects: molecular guidance cues for developing axonal pathways in telencephalon. Prog Mol Subcell Biol 32:1–32Google Scholar
  37. Judaš M, Radoš M, Jovanov-Milošević N, Hrabać P, Stern-Padovan R, Kostović I (2005) Structural, immunocytochemical, and MR imaging properties of periventricular crossroads of growing cortical pathways in preterm infants. Am J Neuroradiol 26:2671–2684PubMedGoogle Scholar
  38. Judaš M, Sedmak G, Pletikos M (2010a) Early history of subplate and interstitial neurons: from Theodor Meynert (1867) to the discovery of the subplate zone (1974). J Anat 217:344–367PubMedGoogle Scholar
  39. Judaš M, Sedmak G, Pletikos M, Jovanov-Milošević N (2010b) Populations of subplate and interstitial neurons in fetal and adult human telencephalon. J Anat 217:381–399PubMedGoogle Scholar
  40. Judaš M, Šimić G, Petanjek Z, Jovanov-Milošević N, Pletikos M, Vasung L, Vukšić M, Kostović I (2011) The Zagreb Collection of human brains: a unique, versatile, but underexploited resource for the neuroscience community. Ann N Y Acad Sci 1225:105–130Google Scholar
  41. Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu XM, Li MF, Sousa AMM, Pletikos M, Meyer KA, Sedmak G, Guennel T, Shin Y, Johnson MB, Krsnik Z, Mayer S, Fertuzinhos S, Umlauf S, Lisgo SN, Vortmeyer A, Weinberger DR, Mane S, Hyde TM, Huttner A, Reimers M, Kleinman JE, Sestan N (2011) Spatio-temporal transcriptome of the human brain. Nature 478:483–489PubMedCentralPubMedGoogle Scholar
  42. Kanold PO (2009) Subplate neurons: crucial regulators of cortical development and plasticity. Front Neuroanat 2(3):16Google Scholar
  43. Kanold PO, Luhmann HJ (2010) The subplate and early cortical circuits. Annu Rev Neurosci 33:23–48PubMedGoogle Scholar
  44. Karama S, Johnson W, Deary IJ, Haier R, Waber DB, Lepage C, Ganjavi H, Jung R, Evans AC, Brain Development Cooperative Group (2011) Cortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6 to 18. Neuroimage 55:1443–1453PubMedCentralPubMedGoogle Scholar
  45. Kidokoro H, Anderson PJ, Doyle LW, Neil JJ, Inder TE (2011) High signal intensity on T2-weighted mr imaging at term-equivalent age in preterm infants does not predict 2-year neurodevelopmental outcomes. Am J Neuroradiol 32:2005–2010PubMedGoogle Scholar
  46. Kim SH, Fonov V, Dietrich C, Vachet C, Hazlett HC, Smith RG, Graves M, Piven J, Gilmore JH, Collins DL, Gerig G, Styner M (2012) Adaptive prior probability and spatial temporal intensity change estimation for segmentation of the one-year-old human brain. J Neurosci Methods. doi: 10.1016/j.neumeth.2012.09.018 Google Scholar
  47. Kinney HC, Haynes RL, Xu G, Andiman SE, Folkerth RD, Sleeper LA, Volpe JJ (2012) Neuron deficit in the white matter and subplate in periventricular leukomalacia. Ann Neurol 71:397–406PubMedCentralPubMedGoogle Scholar
  48. Kostović I, Goldman-Rakic PS (1983) Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain. J Comp Neurol 219:431–447PubMedGoogle Scholar
  49. Kostović I, Jovanov-Milošević N (2006) The development of cerebral connections during the first 20–45 weeks’ gestation. Semin Fetal Neonatal Med 11:415–422PubMedGoogle Scholar
  50. Kostović I, Judaš M (2002) Correlation between the sequential ingrowth of afferents and transient patterns of cortical lamination in preterm infants. Anat Rec 267:1–6PubMedGoogle Scholar
  51. Kostović I, Judaš M (2006) Prolonged coexistence of transient and permanent circuitry elements in the developing cerebral cortex of fetuses and preterm infants. Dev Med Child Neurol 48:388–393PubMedGoogle Scholar
  52. Kostović I, Judaš M (2007) Transient patterns of cortical lamination during prenatal life: Do they have implications for treatment? Neurosci Biobehav Rev 31:1157–1168PubMedGoogle Scholar
  53. Kostović I, Judaš M (2010) The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatr 99:1119–1127PubMedGoogle Scholar
  54. Kostović I, Molliver ME (1974) New interpretation of laminar development of cerebral cortex: synaptogenesis in different layers of neopallium in human fetus. Anat Rec 178:395Google Scholar
  55. Kostović I, Rakic P (1980) Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol 9:219–242PubMedGoogle Scholar
  56. Kostović I, Rakic P (1984) Development of prestriate visual projections in the monkey and human-fetal cerebrum revealed by transient cholinesterase staining. J Neurosci 4:25–42PubMedGoogle Scholar
  57. Kostović I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the Macaque monkey and human brain. J Comp Neurol 297:441–470PubMedGoogle Scholar
  58. Kostović I, Vasung L (2009) Insights from in vitro fetal magnetic resonance imaging of cerebral development. Semin Perinatol 33:220–233PubMedGoogle Scholar
  59. Kostović I, Lukinović N, Judaš M, Bogdanović N, Mrzljak L, Zečević N, Kubat M (1989) Structural basis of the developmental plasticity in the human cerebral-cortex—the role of the transient subplate zone. Metab Brain Dis 4:17–23PubMedGoogle Scholar
  60. Kostović I, Judaš M, Kostovic-Kneževic L, Šimic G, Delalle I, Chudy D, Šajin B, Petanjek Z (1991) Zagreb research collection of human brains for developmental neurobiologists and clinical neuroscientists. Int J Dev Biol 35:215–230PubMedGoogle Scholar
  61. Kostović I, Judaš M, Radoš M, Hrabać P (2002) Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb Cortex 12:536–544PubMedGoogle Scholar
  62. Kostović I, Judaš M, Sedmak G (2011) Developmental history of the subplate zone, subplate neurons and interstitial white matter neurons: relevance for schizophrenia. Int J Dev Neurosci 29:193–205PubMedGoogle Scholar
  63. Kwan KY, Lam MMS, Krsnik Z, Kawasawa YI, Lefebvre V, Sestan N (2008) SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. Proc Natl Acad Sci USA 105:16021–16026PubMedGoogle Scholar
  64. Lamantia AS, Rakic P (1994) Axon overproduction and elimination in the anterior commissure of the developing Rhesus-monkey. J Comp Neurol 340:328–336PubMedGoogle Scholar
  65. Leroy F, Mangin JF, Rousseau F, Glasel H, Hertz-Pannier L, Dubois J, Dehaene-Lambertz G (2011) Atlas-free surface reconstruction of the cortical grey–white interface in infants. PLoS ONE 6:e27128PubMedCentralPubMedGoogle Scholar
  66. Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432PubMedGoogle Scholar
  67. Mathur A, Inder T (2009) Magnetic resonance imaging—insights into brain injury and outcomes in premature infants. J Commun Disord 42:248–255PubMedCentralPubMedGoogle Scholar
  68. McQuillen PS, Ferriero DM (2005) Perinatal subplate neuron injury: implications for cortical development and plasticity. Brain Pathol 15:250–260PubMedGoogle Scholar
  69. Meynert T (1867) Der Bau der Grosshirnrinde und seine örtlichen Verschiedenheiten, nebst einem pathologisch-anatomischen Corollarium. Engelmann, LeipzigGoogle Scholar
  70. Meynert T (1872) Vom Gehirne der Säugethiere. In: Stricker S (ed) Handbuch der Lehre von den Geweben des Menschen und der Thiere, vol 2. Engelmann, Leipzig, pp 694–808Google Scholar
  71. Meynert T (1884) Psychiatrie: Klinik der Erkrankungen des Vorderhirns begründet auf dessen Bau, Leistung und Ernährung. Erste Hälfte. Braumüller, WienGoogle Scholar
  72. Molliver ME, Kostović I, Van Der Loos H (1973) The development of synapses in cerebral cortex of the human fetus. Brain Res 50:403–407PubMedGoogle Scholar
  73. Moore AR, Filipovic R, Mo ZC, Rasband MN, Zecevic N, Antic SD (2009) Electrical excitability of early neurons in the human cerebral cortex during the second trimester of gestation. Cereb Cortex 19:1795–1805PubMedGoogle Scholar
  74. Mrzljak L, Uylings HBM, Kostovic I, Van Eden CG (1988) Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study. J Comp Neurol 15:355–386Google Scholar
  75. Mrzljak L, Uylings HBM, Vaneden CG, Judas M (1990) Neuronal development in human prefrontal cortex in prenatal and postnatal stages. Prog Brain Res 85:185–222PubMedGoogle Scholar
  76. Mrzljak L, Uylings HBM, Kostović I, Vaneden CG (1992) Prenatal development of neurons in the human prefrontal cortex. 2. A quantitative golgi-study. J Comp Neurol 316:485–496PubMedGoogle Scholar
  77. Nakanishi S (1983) Extracellular matrix during laminar pattern formation of neocortex in normal and reeler mutant mice. Developmental Biology 95:305–316PubMedGoogle Scholar
  78. Oishi K, Zilles K, Amunts K, Faria A, Jiang HY, Li X, Akhter K, Hua KG, Woods R, Toga AW, Pike GB, Rosa-Neto P, Evans A, Zhang JY, Huang H, Miller MI, van Zijl PCM, Mazziotta J, Mori S (2008) Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. Neuroimage 43:447–457PubMedCentralPubMedGoogle Scholar
  79. Pearlman AL, Sheppard AM (1996) Extracellular matrix in early cortical development. Neural Dev Plast 108:119–134Google Scholar
  80. Perkins L, Hughes E, Srinivasan L, Allsop J, Glover A, Kumar S, Fisk N, Rutherford M (2008) Exploring cortical subplate evolution using magnetic resonance imaging of the fetal brain. Dev Neurosci 30:211–220PubMedGoogle Scholar
  81. Petanjek Z, Judaš M, Kostović I, Uylings HBM (2008) Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern. Cereb Cortex 18:915–929PubMedGoogle Scholar
  82. Petanjek Z, Judaš M, Šimic G, Rasin MR, Uylings HBM, Rakic P, Kostović I (2011) Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci USA 108:13281–13286PubMedGoogle Scholar
  83. Peters A, Sethares C (1996) Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. J Comp Neurol 365:232–255PubMedGoogle Scholar
  84. Prastawa M, Gilmore JH, Lin W, Gerig G (2005) Automatic segmentation of MR images of the developing newborn brain. Med Image Anal 9:457–466PubMedGoogle Scholar
  85. Prayer D, Kasprian G, Krampl E, Ulm B, Witzani L, Prayer L, Brugger PC (2006) MRI of normal fetal brain development. Eur J Radiol 57:199–216PubMedGoogle Scholar
  86. Radoš M, Judaš M, Kostović I (2006) In vitro MRI of brain development. Eur J Radiol 57(2):187–198Google Scholar
  87. Rajagopalan V, Scott J, Habas PA, Kim K, Corbett-Detig J, Rousseau F, Barkovich AJ, Glenn OA, Studholme C (2011) Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. J Neurosci 31:2878–2887PubMedCentralPubMedGoogle Scholar
  88. Rhodes KE, Fawcett JW (2004) Chondroitin sulphate proteoglycans: preventing plasticity or protecting the CNS? J Anat 204:33–48PubMedGoogle Scholar
  89. Rutherford MA (2009) Magnetic resonance imaging of the fetal brain. Curr Opin Obstet Gynecol 21:180–186PubMedGoogle Scholar
  90. Schmahmann J, Pandya DN (2006) Fibre pathways of the brain. Oxford University Press, OxfordGoogle Scholar
  91. Schwartz ML, Goldman-Rakic PS (1991) Prenatal specification of callosal connections in Rhesus-monkey. J Comp Neurol 307:144–162PubMedGoogle Scholar
  92. Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, Greenstein D, Clasen L, Evans A, Rapoport JL, Giedd JN, Wise SP (2008) Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 28:3586–3594PubMedGoogle Scholar
  93. Shi F, Fan Y, Tang S, Gilmore JH, Lin W, Shen D (2010) Neonatal brain image segmentation in longitudinal MRI studies. Neuroimage 49:391–400PubMedCentralPubMedGoogle Scholar
  94. Smyser CD, Snyder AZ, Neil JJ (2011) Functional connectivity MRI in infants: exploration of the functional organization of the developing brain. Neuroimage 56:1437–1452PubMedCentralPubMedGoogle Scholar
  95. Stewart GR, Pearlman AL (1987) Fibronectin-like immunoreactivity in the developing cerebral-cortex. J Neurosci 7:3325–3333PubMedGoogle Scholar
  96. Tzarouchi LC, Astrakas LG, Xydis V, Zikou A, Kosta P, Drougia A, Andronikou S, Argyropoulou MI (2009) Age-related grey matter changes in preterm infants: an MRI study. Neuroimage 47:1148–1153PubMedGoogle Scholar
  97. Uylings HB, Delalle I (1997) Morphology of neuropeptide Y-immunoreactive neurons and fibers in human prefrontal cortex during prenatal and postnatal development. J Comp Neurol 379(4):523–540PubMedGoogle Scholar
  98. VanEssen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318Google Scholar
  99. Vasung L, Huang H, Jovanov-Milošević N, Pletikos M, Mori S, Kostović I (2010) Development of axonal pathways in the human fetal fronto-limbic brain: histochemical characterization and diffusion tensor imaging. J Anat 217:400–417PubMedGoogle Scholar
  100. Vasung L, Jovanov-Milošević N, Pletikos M, Mori S, Judaš M, Kostović I (2011) Prominent periventricular fiber system related to ganglionic eminence and striatum in the human fetal cerebrum. Brain Struct Funct 215:237–253PubMedGoogle Scholar
  101. Volpe JJ (1996) Subplate neurons—missing link in brain injury of the premature infant? Pediatrics 97:112–113PubMedGoogle Scholar
  102. Volpe JJ (2000) Overview: normal and abnormal human brain development. Mental Retard Dev Disabil Res Rev 6:1–5Google Scholar
  103. von Kölliker A (1896) Handbuch der Gewebelehre des Menschen. Sechste umgearbeitete Auflage. Zweiter Band: Nervensystem des Menschen und der Thiere. Verlag von Wilhelm Engelmann, LeipzigGoogle Scholar
  104. Von Monakow C (1905) Gehirnpathologie. Alfred Holder, WienGoogle Scholar
  105. Vulpius O (1892) Ueber die Entwicklung und Ausbreitung der Tangentialfasern in der menschlichen Grosshirnrinde während verschiedener Altersperioden. Archiv Psychiat Nervenkrankheit 23:775–798Google Scholar
  106. Wedeen VJ, Rosene DL, Wang RP, Dai GP, Mortazavi F, Hagmann P, Kaas JH, Tseng WYI (2012) The geometric structure of the brain fiber pathways. Science 335:1628–1634PubMedCentralPubMedGoogle Scholar
  107. Widjaja E, Geibprasert S, Mahmoodabadi SZ, Blaser S, Brown NE, Shannon P (2010) Alteration of Human fetal subplate layer and intermediate zone during normal development on MR and diffusion tensor imaging. Am J Neuroradiol 31:1091–1099PubMedGoogle Scholar
  108. Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–64Google Scholar
  109. Zecevic N, Verney C (1995) Development of the catecholamine neurons in human embryos and fetuses, with special emphasis on the innervation of the cerebral-cortex. J Comp Neurol 351:509–535PubMedGoogle Scholar
  110. Zikopoulos B, Barbas H (2010) Changes in prefrontal axons may disrupt the network in autism. J Neurosci 30:14595–14609PubMedCentralPubMedGoogle Scholar
  111. Zilles K, Amunts K (2012) Segregation and wiring in the brain. Science 335:1582–1584PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ivica Kostović
    • 1
  • Nataša Jovanov-Milošević
    • 1
  • Milan Radoš
    • 1
  • Goran Sedmak
    • 1
  • Vesna Benjak
    • 2
  • Mirna Kostović-Srzentić
    • 3
  • Lana Vasung
    • 1
    • 5
  • Marko Čuljat
    • 1
    • 2
  • Marko Radoš
    • 1
    • 4
  • Petra Hüppi
    • 5
  • Miloš Judaš
    • 1
  1. 1.Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
  2. 2.Department of Paediatrics, Clinical Hospital Center ZagrebUniversity of Zagreb School of MedicineZagrebCroatia
  3. 3.Department of Health PsychologyUniversity of Applied Health SciencesZagrebCroatia
  4. 4.Department of Clinical and Interventional Radiology, Clinical Hospital Center ZagrebUniversity of Zagreb School of MedicineZagrebCroatia
  5. 5.Division of Development and Growth, Department of PediatricsGeneva University HospitalsGenevaSwitzerland

Personalised recommendations