Skip to main content
Log in

Purkinje cell compartmentalization in the cerebellum of the spontaneous mutant mouse dreher

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The cerebellar morphological phenotype of the spontaneous neurological mutant mouse dreher (Lmx1a dr-J) results from cell fate changes in dorsal midline patterning involving the roof plate and rhombic lip. Positional cloning revealed that the gene Lmx1a, which encodes a LIM homeodomain protein, is mutated in dreher, and is expressed in the developing roof plate and rhombic lip. Loss of Lmx1a causes reduction of the roof plate, an important embryonic signaling center, and abnormal cell fate specification within the embryonic cerebellar rhombic lip. In adult animals, these defects result in variable, medial fusion of the cerebellar vermis and posterior cerebellar vermis hypoplasia. It is unknown whether deleting Lmx1a results in displacement or loss of specific lobules in the vermis. To distinguish between an ectopic and absent vermis, the expression patterns of two Purkinje cell-specific compartmentation antigens, zebrin II/aldolase C and the small heat shock protein HSP25 were analyzed in dreher cerebella. The data reveal that despite the reduction in volume and abnormal foliation of the cerebellum, the transverse zones and parasagittal stripe arrays characteristic of the normal vermis are present in dreher, but may be highly distorted. In dreher mutants with a severe phenotype, zebrin II stripes are fragmented and distributed non-symmetrically about the cerebellar midline. We conclude that although Purkinje cell agenesis or selective Purkinje cell death may contribute to the dreher phenotype, our data suggest that aberrant anlage patterning and granule cell development lead to Purkinje cell ectopia, which ultimately causes abnormal cerebellar architecture in dreher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahn AH, Dziennis S, Hawkes R, Herrup K (1994) The cloning of zebrin II reveals its identity with aldolase C. Development 120(8):2081–2090

    CAS  PubMed  Google Scholar 

  • Aldinger KA, Lehmann OJ, Hudgins L, Chizhikov VV, Bassuk AG, Ades LC, Krantz ID, Dobyns WB, Millen KJ (2009) FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy–Walker malformation. Nat Genet 41(9):1037–1042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nature Rev Neurosci 10(9):670–681

    Article  CAS  Google Scholar 

  • Armstrong CL, Hawkes R (2000) Pattern formation in the cerebellar cortex. Biochem Cell Biol 78(5):551–562

    Article  CAS  PubMed  Google Scholar 

  • Armstrong CL, Hawkes R (2001) Selective Purkinje cell ectopia in the cerebellum of the weaver mouse. J Comp Neurol 439(2):151–161

    Article  CAS  PubMed  Google Scholar 

  • Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R (2000) Constitutive expression of the 25 kDa heat shock protein Hsp25 reveals novel parasagittal bands of Purkinje cells in the adult mouse cerebellar cortex. J Comp Neurol 416(3):383–397

    Article  CAS  PubMed  Google Scholar 

  • Armstrong CL, Chung SH, Armstrong JN, Hochgeschwender U, Jeong YG, Hawkes R (2009) A novel somatostatin-immunoreactive mossy fiber pathway associated with HSP25-immunoreactive Purkinje cell stripes in the mouse cerebellum. J Comp Neurol 517(4):524–538

    Article  CAS  PubMed  Google Scholar 

  • Barkovich AJ, Millen KJ, Dobyns WB (2009) A developmental and genetic classification for midbrain-hindbrain malformations. Brain 132(Pt 12):3199–3230

    Article  PubMed  Google Scholar 

  • Beierbach E, Park C, Ackerman SL, Goldowitz D, Hawkes R (2001) Abnormal dispersion of a Purkinje cell subset in the mouse mutant cerebellar deficient folia (cdf). J Comp Neurol 436(1):42–51

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom DE, Gagnon LH, Eicher EM (1999) Genetic and physical mapping of the dreher locus on mouse chromosome 1. Genomics 59(3):291–299

    Article  CAS  PubMed  Google Scholar 

  • Blank MC, Grinberg I, Aryee E, Laliberte C, Chizhikov VV, Henkelman RM, Millen KJ (2011) Multiple cerebellar developmental programs are altered by loss of Zic1 and Zic4 to cause Dandy–Walker malformation cerebellar pathogenesis. Development 138(6):1207–1216

    Article  CAS  PubMed  Google Scholar 

  • Blatt GJ, Eisenman LM (1985) A qualitative and quantitative light microscopic study of the inferior olivary complex of normal, reeler, and weaver mutant mice. J Comp Neurol 232(1):117–128

    Article  CAS  PubMed  Google Scholar 

  • Brochu G, Maler L, Hawkes R (1990) Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol 291(4):538–552

    Article  CAS  PubMed  Google Scholar 

  • Chizhikov V, Steshina E, Roberts R, Ilkin Y, Washburn L, Millen KJ (2006) Molecular definition of an allelic series of mutations disrupting the mouse Lmx1a (dreher) gene. Mamm Genome 17(10):1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Chizhikov VV, Davenport J, Zhang Q, Shih EK, Cabello OA, Fuchs JL, Yoder BK, Millen KJ (2007) Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J Neurosci 27(36):9780–9789

    Google Scholar 

  • Chizhikov VV, Lindgren AG, Mishima Y, Roberts RW, Aldinger KA, Miesegaes GR, Currle DS, Monuki ES, Millen KJ (2010) Lmx1a regulates fates and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. Proc Natl Acad Sci USA 107(23):10725–10730

    Article  CAS  PubMed  Google Scholar 

  • Costa C, Harding B, Copp AJ (2001) Neuronal migration defects in the Dreher (Lmx1a) mutant mouse: role of disorders of the glial limiting membrane. Cereb Cortex 11(6):498–505

    Article  CAS  PubMed  Google Scholar 

  • Davis CA (1993) Whole-mount immunohistochemistry. Methods Enzymol 225:502–516

    CAS  PubMed  Google Scholar 

  • Dent JA, Paulson AG, Klymkowsky MW (1989) Whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. Development 105(1):61–74

    CAS  PubMed  Google Scholar 

  • Doherty D (2009) Joubert syndrome: insights into brain development, cilium biology, and complex disease. Semin Pediatr Neurol 16(3):143–154

    Article  PubMed Central  PubMed  Google Scholar 

  • Edwards MA, Leclerc N, Crandall JE, Yamamoto M (1994) Purkinje cell compartments in the reeler mutant mouse as revealed by zebrin II and 90-acetylated glycolipid antigen expression. Anat Embryol (Berlin) 190(5):417–428

    Article  CAS  Google Scholar 

  • Eisenman LM, Hawkes R (1993) Antigenic compartmentation in the mouse cerebellar cortex: zebrin and HNK-1 reveal a complex, overlapping molecular topography. J Comp Neurol 335(4):586–605

    Article  CAS  PubMed  Google Scholar 

  • Failli V, Bachy I, Retaux S (2002) Expression of the LIM-homeodomain gene Lmx1a (dreher) during development of the mouse nervous system. Mech Dev 118(1–2):225–228

    Article  CAS  PubMed  Google Scholar 

  • Fink AJ, Englund C, Daza RA, Pham D, Lau C, Nivison M, Kowalczyk T, Hevner RF (2006) Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci 26(11):3066–3076

    Article  CAS  PubMed  Google Scholar 

  • Gallagher E, Howell BW, Soriano P, Cooper JA, Hawkes R (1998) Cerebellar abnormalities in the disabled (mdab1-1) mouse. J Comp Neurol 402(2):238–251

    Article  CAS  PubMed  Google Scholar 

  • Goldowitz D (1989) The weaver granuloprival phenotype is due to intrinsic action of the mutant locus in the granule cell: evidence from homozygous weaver chimeras. Neuron 2(6):1565–1575

    Article  CAS  PubMed  Google Scholar 

  • Grinberg I, Northrup H, Ardinger H, Prasad C, Dobyns WB, Millen KJ (2004) Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in Dandy–Walker malformation. Nat Genet 36(10):1053–1055

    Article  CAS  PubMed  Google Scholar 

  • Hatten ME, Liem RKH, Mason CA (1986) Weaver mouse cerebellar granule neurons fail to migrate on wild type astroglial processes in vitro. J Neurosci 6(9):2676–2683

    CAS  PubMed  Google Scholar 

  • Hawkes R (1997) An anatomical model of cerebellar modules. Prog Brain Res 114:39–52

    Article  CAS  PubMed  Google Scholar 

  • Hawkes R, Leclerc N (1987) Antigenic map of the rat cerebellar cortex: the distribution of parasagittal bands as revealed by monoclonal anti-Purkinje cell antibody mabQ113. J Comp Neurol 256(1):29–41

    Article  CAS  PubMed  Google Scholar 

  • Herrup K, Trenkner E (1987) Regional differences in cytoarchitecture of the weaver cerebellum suggest a new model for weaver gene action. Neuroscience 23(3):871–885

    Article  CAS  PubMed  Google Scholar 

  • Hobert O, Westphal H (2000) Functions of LIM-homeobox genes. Trends Genet 16(2):75–83

    Article  CAS  PubMed  Google Scholar 

  • Hobert O, Tessmar K, Ruvkun G (1999) The Caenorhabditis elegans lim-6 LIM homeobox gene regulates neurite outgrowth and function of particular GABAergic neurons. Development 126(7):1547–1562

    CAS  PubMed  Google Scholar 

  • Howell BW, Hawkes R, Soriano P, Cooper JA (1997) Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389(6652):733–777

    Article  CAS  PubMed  Google Scholar 

  • Hukriede NA, Tsang TE, Habas R, Khoo PL, Steiner K, Weeks DL, Tam PP, Dawid IB (2003) Conserved requirement of Lim1 function for cell movements during gastrulation. Dev Cell 4(1):83–94

    Article  CAS  PubMed  Google Scholar 

  • Hunter CS, Rhodes SJ (2005) LIM-homeodomain genes in mammalian development and human disease. Mol Biol Rep 32(2):67–77

    Article  CAS  PubMed  Google Scholar 

  • Jensen P, Zoghbi HY, Goldowitz D (2002) Dissection of the cellular and molecular events that position cerebellar Purkinje cells: a study of the math1 null-mutant mouse. J Neurosci 22(18):8110–8116

    CAS  PubMed  Google Scholar 

  • Ji Z, Hawkes R (1995) Developing mossy fiber terminal fields in the rat cerebellar cortex may segregate because of Purkinje cell compartmentation and not competition. J Comp Neurol 359(2):197–212

    Article  CAS  PubMed  Google Scholar 

  • Jones M, Yang M, Mickelsen O (1972) Effects of methylazoxymethanol glucoside and methylazoxymethanol acetate on the cerebellum of the postnatal Swiss albino mouse. Fed Proc 31(5):1508–1511

    CAS  PubMed  Google Scholar 

  • Kikuchi Y, Segawa H, Tokumoto M, Tsubokawa T, Hotta Y, Uyemura K, Okamoto H (1997) Ocular and cerebellar defects in zebrafish induced by overexpression of the LIM domains of the islet-3 LIM/homeodomain protein. Neuron 18(3):369–382

    Article  CAS  PubMed  Google Scholar 

  • Kuramoto T, Kuwamura M, Serikawa T (2004) Rat neurological mutations cerebellar vermis defect and hobble are caused by mutations in the netrin-1 receptor gene Unc5h3. Brain Res Mol Brain Res 122(2):103–108

    Article  CAS  PubMed  Google Scholar 

  • Kuwamura M, Ishida A, Yamate J, Kato K, Kotani T, Sakuma S (1997) Chronological and immunohistochemical observations of cerebellar dysplasia and vermis defect in the hereditary cerebellar vermis defect (CVD) rat. Acta Neuropathol 94(6):549–556

    Article  CAS  PubMed  Google Scholar 

  • Lannoo MJ, Brochu G, Maler L, Hawkes R (1991) Zebrin II immunoreactivity in the rat and in the weakly electric teleost Eigenmannia (Gymnotiformes) reveals three modes of Purkinje cell development. J Comp Neurol 310(2):215–233

    Article  CAS  PubMed  Google Scholar 

  • Larouche M, Hawkes R (2006) From clusters to stripes: the developmental origins of adult cerebellar compartmentation. Cerebellum 5(2):77–88

    Article  CAS  PubMed  Google Scholar 

  • Larouche M, Diep C, Sillitoe RV, Hawkes R (2003) The topographical anatomy of the cerebellum in the guinea pig, Cavia porcellus. Brain Res 965(1–2):159–169

    Article  CAS  PubMed  Google Scholar 

  • Larouche M, Beffert U, Herz J, Hawkes R (2008) The Reelin receptors Apoer2 and Vldlr coordinate the patterning of Purkinje cell topography in the developing mouse cerebellum. PLoS ONE 3(2):e1653

    Article  PubMed Central  PubMed  Google Scholar 

  • Leclerc N, Gravel C, Hawkes R (1988) Development of parasagittal zonation in the rat cerebellar cortex: mabQ113 antigenic bands are created postnatally by the suppression of antigen expression in a subset of Purkinje cells. J Comp Neurol 273(3):399–420

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Gleeson JG (2010) The role of primary cilia in neuronal function. Neurobiol Dis 38(2):167–172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Louvi A, Alexandre P, Métin C, Wurst W, Wassef M (2003) The isthmic neuroepithelium is essential for cerebellar midline fusion. Development 130(22):5319–5330

    Article  CAS  PubMed  Google Scholar 

  • Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Manzanares M, Trainor PA, Ariza-McNaughton L, Nonchev S, Krumlauf R (2000) Dorsal patterning defects in the hindbrain, roof plate and skeleton in the dreher (dr(J)) mouse mutant. Mech Dev 94(1–2):147–156

    Article  CAS  PubMed  Google Scholar 

  • Maria BL, Hoang KB, Tusa RJ, Mancuso AA, Hamed LM, Quisling RG, Hove MT, Fennell EB, Booth-Jones M, Ringdahl DM, Yachnis AT, Creel G, Frerking B (1997) “Joubert syndrome” revisited: key ocular motor signs with magnetic resonance imaging correlation. J Child Neurol 12(7):423–430

    Article  CAS  PubMed  Google Scholar 

  • Marzban H, Hawkes R (2011) On the architecture of the posterior zone of the cerebellum. Cerebellum 10(3):422–434

    Article  PubMed  Google Scholar 

  • Matthews JM, Bhati M, Craig VJ, Deane JE, Jeffries C, Lee C, Nancarrow AL, Ryan DP, Sunde M (2008) Competition between LIM-binding domains. Biochem Soc Trans 36(Pt 6):1393–1397

    Article  CAS  PubMed  Google Scholar 

  • Meek J, Hafmans TG, Maler L, Hawkes R (1992) Distribution of zebrin II in the gigantocerebellum of the mormyrid fish Gnathonemus petersii compared with other teleosts. J Comp Neurol 316(1):17–31

    Article  CAS  PubMed  Google Scholar 

  • Millonig JH, Millen KJ, Hatten ME (2000) The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403(6771):764–769

    Article  CAS  PubMed  Google Scholar 

  • Mishima Y, Lindgren AG, Chizhikov VV, Johnson RL, Millen KJ (2009) Overlapping function of Lmx1a and Lmx1b in anterior hindbrain roof plate formation and cerebellar growth. J Neurosci 29(36):11377–11384

    Article  CAS  PubMed  Google Scholar 

  • Miyata T, Ono Y, Okamoto M, Masaoka M, Sakakibara A, Kawaguchi A, Mitsuhiro M, Ogawa M (2010) Migration, early axonogenesis, and Reelin-dependent layer-forming behavior of early/posterior-born Purkinje cells in the developing mouse lateral cerebellum. Neural Dev 5:23

    Article  PubMed Central  PubMed  Google Scholar 

  • Murcia CL, Gulden FO, Cherosky NA, Herrup K (2007) A genetic study of the suppressors of the Engrailed-1 cerebellar phenotype. Brain Res 1140:170–178

    Article  CAS  PubMed  Google Scholar 

  • Ozol K, Hayden JM, Oberdick J, Hawkes R (1999) Transverse zones in the vermis of the mouse cerebellum. J Comp Neurol 412(1):95–111

    Article  CAS  PubMed  Google Scholar 

  • Pakan JM, Iwaniuk AN, Wylie DR, Hawkes R, Marzban H (2007) Purkinje cell compartmentation as revealed by zebrin II expression in the cerebellar cortex of pigeons (Columba livia). J Comp Neurol 501(4):619–630

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Barkovich AJ (2002) Analysis and classification of cerebellar malformations. Am J Neuroradiol 23(7):1074–1087

    PubMed  Google Scholar 

  • Patrylo PR, Sekiguchi M, Nowakowski RS (1990) Heterozygote effects in dreher mice. J Neurogenet 6(3):173–181

    Article  CAS  PubMed  Google Scholar 

  • Rezai Z, Yoon CH (1972) Abnormal rate of granule cell migration in the cerebellum of “weaver” mutant mice. Dev Biol 29(1):17–26

    Article  CAS  PubMed  Google Scholar 

  • Rose MF, Ahmad KA, Thaller C, Zoghbi HY (2009) Excitatory neurons of the proprioceptive, interoceptive, and arousal hindbrain networks share a developmental requirement for Math1. Proc Natl Acad Sci USA 106(52):22462–22467

    Article  CAS  PubMed  Google Scholar 

  • Sanchez M, Sillitoe RV, Attwell PJE, Ivarsson M, Rahman S, Yeo CH, Hawkes R (2002) Compartmentation of the rabbit cerebellar cortex. J Comp Neurol 444(2):159–173

    Article  PubMed  Google Scholar 

  • Sarna JR, Hawkes R (2003) Patterned Purkinje cell death in the cerebellum. Prog Neurobiol 70(6):473–507

    Article  CAS  PubMed  Google Scholar 

  • Sarna JR, Larouche M, Marzban H, Sillitoe RV, Rancourt DE, Hawkes R (2003) Patterned Purkinje cell degeneration in mouse models of Niemann-Pick type C disease. J Comp Neurol 456(3):279–291

    Article  PubMed  Google Scholar 

  • Seil FJ, Johnson ML, Hawkes R (1995) Molecular compartmentation expressed in cerebellar cultures in the absence of neuronal activity and neuron–glial interactions. J Comp Neurol 356(3):398–407

    Article  CAS  PubMed  Google Scholar 

  • Sekiguchi M, Shimai K, Guo H, Nowakowski RS (1992) Cytoarchitectonic abnormalities in hippocampal formation and cerebellum of dreher mutant mouse. Dev Brain Res 67(1):105–112

    Article  CAS  Google Scholar 

  • Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL (2005) Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 45(1):27–40

    CAS  PubMed  Google Scholar 

  • Sillitoe RV, Hawkes R (2002) Whole-mount immunohistochemistry: a high-throughput screen for patterning defects in the mouse cerebellum. J Histochem Cytochem 50(2):235–244

    Article  CAS  PubMed  Google Scholar 

  • Sillitoe RV, Joyner AL (2007) Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol 23:549–577

    Article  CAS  PubMed  Google Scholar 

  • Sillitoe RV, Benson MA, Blake DJ, Hawkes R (2003) Abnormal dysbindin expression in cerebellar mossy fiber synapses in the mdx mouse model of Duchenne muscular dystrophy. J Neurosci 23(16):6576–6585

    CAS  PubMed  Google Scholar 

  • Sillitoe RV, Marzban H, Larouche M, Zahedi S, Affanni J, Hawkes R (2005) Conservation of the architecture of the anterior lobe vermis of the cerebellum across mammalian species. Prog Brain Res 148:283–297

    Article  PubMed  Google Scholar 

  • Sillitoe RV, Stephen D, Lao Z, Joyner AL (2008) Engrailed homeobox genes determine the organization of Purkinje cell sagittal stripe gene expression in the adult cerebellum. J Neurosci 28(47):12150–12162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smeyne RT, Goldowitz D (1990) Purkinje cell loss is due to a direct action of the weaver gene in Purkinje cells: evidence from chimeric mice. Dev Brain Res 52(1–2):211–218

    Article  CAS  Google Scholar 

  • Spassky N, Han YG, Aguilar A, Strehl L, Besse L, Laclef C, Ros MR, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev Biol 317(1):246–259

    Article  CAS  PubMed  Google Scholar 

  • Walther EU, Dichgans M, Maricich SM, Romito RR, Yang F, Dziennis S, Zackson S, Hawkes R, Herrup K (1998) Genomic sequences of aldolase C (Zebrin II) direct lacZ expression exclusively in non-neuronal cells of transgenic mice. Proc Natl Acad Sci USA 95(5):2615–2620

    Article  CAS  PubMed  Google Scholar 

  • Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48(1):31–43

    Article  CAS  PubMed  Google Scholar 

  • Wassef M, Sotelo C, Thomasset M, Granholm A-C, Leclerc N, Rafrafi J, Hawkes R (1990) Expression of compartmentation antigen zebrin I in cerebellar transplants. J Comp Neurol 294(2):223–234

    Article  CAS  PubMed  Google Scholar 

  • Wingate RJ, Hatten ME (1999) The role of the rhombic lip in avian cerebellum development. Development 126(20):4395–4404

    CAS  PubMed  Google Scholar 

  • Zagrebelsky M, Rossi F, Hawkes R, Strata P (1996) Topographically organised climbing fibre sprouting in the adult mammalian cerebellum. Eur J Neurosci 8(5):1051–1054

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Sheng HZ, Amini R, Grinberg A, Lee E, Huang S, Taira M, Westphal H (1999) Control of hippocampal morphogenesis and neuronal differentiation by the LIM homeobox gene Lhx5. Science 284(5417):1155–1158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

These studies were supported by grants from the Canadian Institutes of Health Research (RH), the CIHR Training Program in Genetics, Child Development and Health (RVS), and NIH R01 NS050386 (KJM). RVS is currently supported by new investigator start-up funds from Baylor College of Medicine and Texas Children’s Hospital, by the Caroline Wiess Law Fund for Research in Molecular Medicine, a BCM IDDRC Project Development Award, and by a BCM IDDRC Grant (Number 5P30HD024064) from the Eunice Kennedy Shriver National Institute Of Child Health and Human Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy V. Sillitoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sillitoe, R.V., George-Jones, N.A., Millen, K.J. et al. Purkinje cell compartmentalization in the cerebellum of the spontaneous mutant mouse dreher . Brain Struct Funct 219, 35–47 (2014). https://doi.org/10.1007/s00429-012-0482-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0482-6

Keywords

Navigation