Skip to main content

Advertisement

Log in

Stimulant drugs trigger transient volumetric changes in the human ventral striatum

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The ventral striatum (VStr) integrates mesolimbic dopaminergic and corticolimbic glutamatergic afferents and forms an essential component of the neural circuitry regulating impulsive behaviour. This structure represents a primary target of psychostimulant medication, the first-choice treatment for attention-deficit/hyperactivity disorder (ADHD), and is biochemically modified by these drugs in animals. However, the effects of stimulants on the human VStr remain to be determined. We acquired anatomical brain MRI scans from 23 never-medicated adult patients with ADHD, 31 adult patients with a history of stimulant treatment and 32 control subjects, and VStr volumes were determined using individual rater-blinded region of interest delineation on high-resolution neuroanatomical scans. Furthermore, we also extracted VStr volumes before and after methylphenidate treatment in a subsample of the medication-naïve adult patients as well as in 20 never-medicated children with ADHD. We observed smaller VStr volumes in adult patients with a history of stimulant treatment in comparison to never-medicated patients. Moreover, our longitudinal analyses uncovered a reduction of grey matter volume in the bilateral VStr in adult patients after exposure to methylphenidate, which was followed by volumetric recovery to control level. In children, the same pattern of VStr volume changes was observed after treatment with methylphenidate. These findings suggest that the altered VStr volumes previously observed in patients with ADHD may represent a transitory effect of stimulant exposure rather than an intrinsic feature of the disorder. More generally, these data show that stimulant drugs can render plastic volume changes in human VStr neuroanatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achenbach TM, Ruffle TM (2000) The Child Behavior Checklist and related forms for assessing behavioral/emotional problems and competencies. Pediatr Rev 21:265–271

    Article  CAS  PubMed  Google Scholar 

  • Adriani W, Canese R, Podo F, Laviola G (2007) 1H MRS-detectable metabolic brain changes and reduced impulsive behavior in adult rats exposed to methylphenidate during adolescence. Neurotoxicol Teratol 29:116–125

    Article  CAS  PubMed  Google Scholar 

  • Adriani W, Boyer F, Gioiosa L, Macri S, Dreyer JL, Laviola G (2009) Increased impulsive behavior and risk proneness following lentivirus-mediated dopamine transporter over-expression in rats’ nucleus accumbens. Neuroscience 159:47–58

    Article  CAS  PubMed  Google Scholar 

  • American Psychiatric Association. Task Force on DSM-IV (2000) Diagnostic and statistical manual of mental disorders: DSM IV-TR. American Psychiatric Association, Washington, DC

  • Arnsten AF (2006) Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways. J Clin Psychiatry 67(Suppl 8):7–12

    CAS  PubMed  Google Scholar 

  • Basar K, Sesia T, Groenewegen H, Steinbusch HW, Visser-Vandewalle V, Temel Y (2010) Nucleus accumbens and impulsivity. Prog Neurobiol 92:533–557

    Article  PubMed  Google Scholar 

  • Benedict RH, Ramasamy D, Munschauer F, Weinstock-Guttman B, Zivadinov R (2009) Memory impairment in multiple sclerosis: correlation with deep grey matter and mesial temporal atrophy. J Neurol Neurosurg Psychiatry 80:201–206

    Article  CAS  PubMed  Google Scholar 

  • Bigler ED, Abildskov TJ, Wilde EA, McCauley SR, Li X, Merkley TL, Fearing MA, Newsome MR, Scheibel RS, Hunter JV, Chu Z, Levin HS (2010) Diffuse damage in pediatric traumatic brain injury: a comparison of automated versus operator-controlled quantification methods. Neuroimage 50:1017–1026

    Article  PubMed  Google Scholar 

  • Brandon CL, Steiner H (2003) Repeated methylphenidate treatment in adolescent rats alters gene regulation in the striatum. Eur J Neurosci 18:1584–1592

    Article  PubMed  Google Scholar 

  • Cardinal RN, Cheung TH (2005) Nucleus accumbens core lesions retard instrumental learning and performance with delayed reinforcement in the rat. BMC Neurosci 6:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Cardinal RN, Howes NJ (2005) Effects of lesions of the nucleus accumbens core on choice between small certain rewards and large uncertain rewards in rats. BMC Neurosci 6:37

    Article  PubMed Central  PubMed  Google Scholar 

  • Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292:2499–2501

    Article  CAS  PubMed  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    Article  PubMed  Google Scholar 

  • Carey MP, Diewald LM, Esposito FJ, Pellicano MP, Gironi Carnevale UA, Sergeant JA, Papa M, Sadile AG (1998) Differential distribution, affinity and plasticity of dopamine D-1 and D-2 receptors in the target sites of the mesolimbic system in an animal model of ADHD. Behav Brain Res 94:173–185

    Article  CAS  PubMed  Google Scholar 

  • Carmona S, Proal E, Hoekzema EA, Gispert JD, Picado M, Moreno I, Soliva JC, Bielsa A, Rovira M, Hilferty J, Bulbena A, Casas M, Tobena A, Vilarroya O (2009) Ventro-striatal reductions underpin symptoms of hyperactivity and impulsivity in attention-deficit/hyperactivity disorder. Biol Psychiatry 66:972–977

    Article  PubMed  Google Scholar 

  • Cavaliere C, Cirillo G, Bianco MR, Adriani W, De SA, Leo D, Perrone-Capano C, Papa M (2012) Methylphenidate administration determines enduring changes in neuroglial network in rats. Eur Neuropsychopharmacol 22:53–63

    Article  CAS  PubMed  Google Scholar 

  • Chase TD, Carrey N, Brown RE, Wilkinson M (2005) Methylphenidate regulates c-fos and fosB expression in multiple regions of the immature rat brain. Brain Res Dev Brain Res 156:1–12

    Article  CAS  PubMed  Google Scholar 

  • Conners CK, Sitarenios G, Parker JD, Epstein JN (1998a) Revision and restandardization of the Conners Teacher Rating Scale (CTRS-R): factor structure, reliability, and criterion validity. J Abnorm Child Psychol 26:279–291

    Article  CAS  PubMed  Google Scholar 

  • Conners CK, Sitarenios G, Parker JD, Epstein JN (1998b) The revised Conners’ Parent Rating Scale (CPRS-R): factor structure, reliability, and criterion validity. J Abnorm Child Psychol 26:257–268

    Article  CAS  PubMed  Google Scholar 

  • Conners CK, Erhardt D, Sparrow E (1999) Conners’ Adult ADHD Rating Scales (CAARS): technical manual. MHS Inc, New York

    Google Scholar 

  • Dabbs K, Becker T, Jones J, Rutecki P, Seidenberg M, Hermann B (2012) Brain structure and aging in chronic temporal lobe epilepsy. Epilepsia 53:1033–1043

    Article  PubMed Central  PubMed  Google Scholar 

  • Dewey J, Hana G, Russell T, Price J, McCaffrey D, Harezlak J, Sem E, Anyanwu JC, Guttmann CR, Navia B, Cohen R, Tate DF (2010) Reliability and validity of MRI-based automated volumetry software relative to auto-assisted manual measurement of subcortical structures in HIV-infected patients from a multisite study. Neuroimage 51:1334–1344

    Article  PubMed Central  PubMed  Google Scholar 

  • DuPaul GJ (1998) ADHD rating scale-IV: checklists, norms and clinical interpretation. Guilford Press, New York

    Google Scholar 

  • Epstein J, Johnson D, Conners K (1999) Conners adult ADHD Diagnostic Interview for DSM-IV. Multi-Health Systems, North Tonawanda

    Google Scholar 

  • First M, Gibbon M, Spitzer R, William BW, Benjamin LS (1997) Interview for DSM-IV Axis II Personality Disorders SCID-II. American Psychiatric Press, Washington, DC

    Google Scholar 

  • First M, Spitzer R, Gibbon M, Williams JBW (2002) Structured Clinical Interview for DSM-IV-TR Axis I Disorders: research version, patient edition. Biometrics Research, New York State Psychiatric Institute, New York

    Google Scholar 

  • Fukui R, Svenningsson P, Matsuishi T, Higashi H, Nairn AC, Greengard P, Nishi A (2003) Effect of methylphenidate on dopamine/DARPP signalling in adult, but not young, mice. J Neurochem 87:1391–1401

    Article  CAS  PubMed  Google Scholar 

  • Guitart-Masip M, Johansson B, Fernandez-Teruel A, Canete T, Tobena A, Terenius L, Gimenez-Llort L (2006) Divergent anatomical pattern of D1 and D3 binding and dopamine- and cyclic AMP-regulated phosphoprotein of 32 kDa mRNA expression in the Roman rat strains: implications for drug addiction. Neuroscience 142:1231–1243

    Article  CAS  PubMed  Google Scholar 

  • Guitart-Masip M, Bunzeck N, Stephan KE, Dolan RJ, Duzel E (2010) Contextual novelty changes reward representations in the striatum. J Neurosci 30:1721–1726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gunduz H, Wu H, Ashtari M, Bogerts B, Crandall D, Robinson DG, Alvir J, Lieberman J, Kane J, Bilder R (2002) Basal ganglia volumes in first-episode schizophrenia and healthy comparison subjects. Biol Psychiatry 51:801–808

    Article  PubMed  Google Scholar 

  • Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:4–26

    Article  PubMed  Google Scholar 

  • Hawken CM, Brown RE, Carrey N, Wilkinson M (2004) Long-term methylphenidate treatment down-regulates c-fos in the striatum of male CD-1 mice. NeuroReport 15:1045–1048

    Article  CAS  PubMed  Google Scholar 

  • Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56:27–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Izawa E, Zachar G, Yanagihara S, Matsushima T (2003) Localized lesion of caudal part of lobus parolfactorius caused impulsive choice in the domestic chick: evolutionarily conserved function of ventral striatum. J Neurosci 23:1894–1902

    CAS  PubMed  Google Scholar 

  • Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, Williamson D, Ryan N (1997) Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 36:980–988

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Teylan MA, Baron M, Sands A, Nairn AC, Greengard P (2009) Methylphenidate-induced dendritic spine formation and DeltaFosB expression in nucleus accumbens. Proc Natl Acad Sci U S A 106:2915–2920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knutson B, Cooper JC (2005) Functional magnetic resonance imaging of reward prediction. Curr Opin Neurol 18:411–417

    Article  PubMed  Google Scholar 

  • Kuczenski R, Segal DS (1997) Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem 68:2032–2037

    Article  CAS  PubMed  Google Scholar 

  • Lee KW, Kim Y, Kim AM, Helmin K, Nairn AC, Greengard P (2006) Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc Natl Acad Sci U S A 103:3399–3404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leo D, Adriani W, Cavaliere C, Cirillo G, Marco EM, Romano E, di Porzio U, Papa M, Perrone-Capano C, Laviola G (2009) Methylphenidate to adolescent rats drives enduring changes of accumbal Htr7 expression: implications for impulsive behavior and neuronal morphology. Genes Brain Behav 8:356–368

    Article  CAS  PubMed  Google Scholar 

  • Miller DB, O’Callaghan JP, Ali SF (2000) Age as a susceptibility factor in the striatal dopaminergic neurotoxicity observed in the mouse following substituted amphetamine exposure. Ann NY Acad Sci 914:194–207

    Article  CAS  PubMed  Google Scholar 

  • Moll GH, Hause S, Ruther E, Rothenberger A, Huether G (2001) Early methylphenidate administration to young rats causes a persistent reduction in the density of striatal dopamine transporters. J Child Adolesc Psychopharmacol 11:15–24

    Article  CAS  PubMed  Google Scholar 

  • Nardelli A, Lebel C, Rasmussen C, Andrew G, Beaulieu C (2011) Extensive deep gray matter volume reductions in children and adolescents with fetal alcohol spectrum disorders. Alcohol Clin Exp Res 35:1404–1417

    CAS  PubMed  Google Scholar 

  • Northoff G, Hayes DJ (2011) Is our self nothing but reward? Biol Psychiatry 69:1019–1025

    Article  PubMed  Google Scholar 

  • O’Doherty JP (2004) Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr Opin Neurobiol 14:769–776

    Article  PubMed  Google Scholar 

  • O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304:452–454

    Article  PubMed  Google Scholar 

  • O’Doherty JP, Buchanan TW, Seymour B, Dolan RJ (2006) Predictive neural coding of reward preference involves dissociable responses in human ventral midbrain and ventral striatum. Neuron 49:157–166

    Article  PubMed  Google Scholar 

  • Plichta MM, Vasic N, Wolf RC, Lesch KP, Brummer D, Jacob C, Fallgatter AJ, Gron G (2009) Neural hyporesponsiveness and hyperresponsiveness during immediate and delayed reward processing in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 65:7–14

    Article  PubMed  Google Scholar 

  • Pulipparacharuvil S, Renthal W, Hale CF, Taniguchi M, Xiao G, Kumar A, Russo SJ, Sikder D, Dewey CM, Davis MM, Greengard P, Nairn AC, Nestler EJ, Cowan CW (2008) Cocaine regulates MEF2 to control synaptic and behavioral plasticity. Neuron 59:621–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramos-Quiroga JA, Bosch R, Richarte Fernández V, Valero S, Gómez-Barros N, Nogueira M, Palomar G, Corrales M, Sáez-Francàs N, Corominas M, Real A, Vidal R, Chalita PJ, Casas M (2012) Validez de criterio y concurrente de la versión española de la Conners Adult ADHD Diagnostic Interview for DSM-IV. Rev Psiquiatr Salud Ment (Barc) 5:229–235

  • Ricaurte GA, Mechan AO, Yuan J, Hatzidimitriou G, Xie T, Mayne AH, McCann UD (2005) Amphetamine treatment similar to that used in the treatment of adult attention-deficit/hyperactivity disorder damages dopaminergic nerve endings in the striatum of adult nonhuman primates. J Pharmacol Exp Ther 315:91–98

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW, Everitt BJ (1996) Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol 6:228–236

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Kolb B (1997) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J Neurosci 17:8491–8497

    CAS  PubMed  Google Scholar 

  • Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47(Suppl 1):33–46

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Gorny G, Mitton E, Kolb B (2001) Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse 39:257–266

    Article  CAS  PubMed  Google Scholar 

  • Sagvolden T, Johansen EB, Aase H, Russell VA (2005) A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci 28:397–419

    Article  PubMed  Google Scholar 

  • Scheres A, Milham MP, Knutson B, Castellanos FX (2007) Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biol Psychiatry 61:720–724

    Article  PubMed  Google Scholar 

  • Sonuga-Barke EJ (2003) The dual pathway model of AD/HD: an elaboration of neuro-developmental characteristics. Neurosci Biobehav Rev 27:593–604

    Article  PubMed  Google Scholar 

  • Sonuga-Barke EJ (2005) Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biol Psychiatry 57:1231–1238

    Article  PubMed  Google Scholar 

  • Strohle A, Stoy M, Wrase J, Schwarzer S, Schlagenhauf F, Huss M, Hein J, Nedderhut A, Neumann B, Gregor A, Juckel G, Knutson B, Lehmkuhl U, Bauer M, Heinz A (2008) Reward anticipation and outcomes in adult males with attention-deficit/hyperactivity disorder. Neuroimage 39:966–972

    Article  PubMed  Google Scholar 

  • Tricomi E, Rangel A, Camerer CF, O’Doherty JP (2010) Neural evidence for inequality-averse social preferences. Nature 463:1089–1091

    Article  CAS  PubMed  Google Scholar 

  • Tripp G, Wickens JR (2008) Research review: dopamine transfer deficit: a neurobiological theory of altered reinforcement mechanisms in ADHD. J Child Psychol Psychiatry 49:691–704

    Article  PubMed  Google Scholar 

  • Volz TJ, Farnsworth SJ, Hanson GR, Fleckenstein AE (2008) Methylphenidate-induced alterations in synaptic vesicle trafficking and activity. Ann NY Acad Sci 1139:285–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ward MF, Wender PH, Reimherr FW (1993) The Wender Utah Rating Scale: an aid in the retrospective diagnosis of childhood attention deficit hyperactivity disorder. Am J Psychiatry 150:885–890

    CAS  PubMed  Google Scholar 

  • Wechsler D (1997) Wechsler Adult Intelligence Scale-III. The Psychological Corporation, San Antonio

    Google Scholar 

  • Wechsler D (2004) The Wechsler intelligence scale for children-fourth edition. Pearson Assessment, London

    Google Scholar 

  • Wilens TE (2008) Effects of methylphenidate on the catecholaminergic system in attention-deficit/hyperactivity disorder. J Clin Psychopharmacol 28:S46–S53

    Article  CAS  PubMed  Google Scholar 

  • Wittmann BC, Daw ND, Seymour B, Dolan RJ (2008) Striatal activity underlies novelty-based choice in humans. Neuron 58:967–973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu Y, Ragin AB, Du H, Sidharthan S, Dunkle EE, Koktzoglou I, Edelman RR (2010) Sub-millimeter isotropic MRI for segmentation of subcortical brain regions and brain visualization. J Magn Reson Imaging 31:980–986

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundación Alicia Koplowitz and the Ministerio de Ciencia e Innovación (SAF2009-10901). The latter institution also awarded a Postdoctoral Research grant to SC and a Formación de Profesorado Universitario grant to EH. The funding agencies did not play a role in any aspect of this study. We want to thank TDAH Catalunya for their collaboration and for referring patients for our study.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elseline Hoekzema.

Additional information

E. Hoekzema and S. Carmona contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoekzema, E., Carmona, S., Ramos-Quiroga, J.A. et al. Stimulant drugs trigger transient volumetric changes in the human ventral striatum. Brain Struct Funct 219, 23–34 (2014). https://doi.org/10.1007/s00429-012-0481-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0481-7

Keywords

Navigation