Skip to main content
Log in

Ankyrin-B structurally defines terminal microdomains of peripheral somatosensory axons

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Axons are subdivided into functionally organized microdomains, which are required for generation and propagation of action potentials (APs). In the central nervous system (CNS), APs are generated near the soma in the axon initial segment (AIS) and propagated by nodes of Ranvier (noR). The crucial role of the membrane adapter proteins ankyrin-B and ankyrin-G as organizers of AIS and noR is now well established. By comparison, little is known on the localization and function of these proteins in sensory axon terminals of the peripheral nervous systems (PNS). Here, we tested the hypothesis that somatosensory PNS terminals are organized by distinct members of the ankyrin protein family. We discovered a specific distribution of ankyrin-B in somatosensory axon terminals of skin and muscle. Specifically, ankyrin-B was localized along the membrane of axons innervating Meissner corpuscles, Pacinian corpuscles and hair follicle receptors. Likewise, proprioceptive terminals of muscle spindles exhibited prominent ankyrin-B expression. Furthermore, ankyrin-B expression extended into nociceptive and thermoceptive intraepidermal nerve fibers. Interestingly, all studied somatosensory terminals were largely devoid of ankyrin-G, indicating that this scaffolding protein does not contribute to organization of mechanoelectric transduction zones in peripheral somatosensory neurons. Instead, we propose that ankyrin-B serves as a major membrane organizer in mechanoreceptive and nociceptive terminals of the PNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ackerman MJ, Mohler PJ (2010) Defining a new paradigm for human arrhythmia syndromes: phenotypic manifestations of gene mutations in ion channel- and transporter-associated proteins. Circ Res 107:457–465

    Article  PubMed  CAS  Google Scholar 

  • Arroyo EJ, Scherer SS (2000) On the molecular architecture of myelinated fibers. Histochem Cell Biol 113:1–18

    Article  PubMed  CAS  Google Scholar 

  • Arroyo EJ, Xu YT, Zhou L, Messing A, Peles E, Chiu SY, Scherer SS (1999) Myelinating Schwann cells determine the internodal localization of Kv1.1, Kv1.2, Kvbeta2, and Caspr. J Neurocytol 28:333–347

    Article  PubMed  CAS  Google Scholar 

  • Arroyo EJ, Xu T, Poliak S, Watson M, Peles E, Scherer SS (2001) Internodal specializations of myelinated axons in the central nervous system. Cell Tissue Res 305:53–66

    Article  PubMed  CAS  Google Scholar 

  • Ayalon G, Davis JQ, Scotland PB, Bennett V (2008) An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell 135:1189–1200

    Article  PubMed  CAS  Google Scholar 

  • Bennett V, Baines AJ (2001) Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81:1353–1392

    PubMed  CAS  Google Scholar 

  • Bennett V, Healy J (2009) Membrane domains based on ankyrin and spectrin associated with cell–cell interactions. Cold Spring Harb Perspect Biol 1:a003012

    Article  PubMed  Google Scholar 

  • Bennett V, Lambert S (1999) Physiological roles of axonal ankyrins in survival of premyelinated axons and localization of voltage-gated sodium channels. J Neurocytol 28:303–318

    Article  PubMed  CAS  Google Scholar 

  • Chan W, Kordeli E, Bennett V (1993) 440-kD ankyrinB: structure of the major developmentally regulated domain and selective localization in unmyelinated axons. J Cell Biol 123:1463–1473

    Article  PubMed  CAS  Google Scholar 

  • Chernoff GF (1981) Shiverer: an autosomal recessive mutant mouse with myelin deficiency. J Hered 72:128

    PubMed  CAS  Google Scholar 

  • Einheber S, Zanazzi G, Ching W, Scherer S, Milner TA, Peles E, Salzer JL (1997) The axonal membrane protein Caspr, a homologue of neurexin IV, is a component of the septate-like paranodal junctions that assemble during myelination. J Cell Biol 139:1495–1506

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt M, Wachs FP, Couillard-Despres S, Aigner L (2004) The neurogenic competence of progenitors from the postnatal rat retina in vitro. Exp Eye Res 78:1025–1036

    Article  PubMed  CAS  Google Scholar 

  • Galiano MR, Jha S, Ho TS, Zhang C, Ogawa Y, Chang KJ, Stankewich MC, Mohler PJ, Rasband MN (2012) A distal axonal cytoskeleton forms an intra-axonal boundary that controls axon initial segment assembly. Cell 149:1125–1139

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Anoveros J, Samad TA, Zuvela-Jelaska L, Woolf CJ, Corey DP (2001) Transport and localization of the DEG/ENaC ion channel BNaC1alpha to peripheral mechanosensory terminals of dorsal root ganglia neurons. J Neurosci 21:2678–2686

    PubMed  CAS  Google Scholar 

  • Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413:194–202

    Article  PubMed  CAS  Google Scholar 

  • Goedert M, Jakes R, Crowther RA, Cohen P, Vanmechelen E, Vandermeeren M, Cras P (1994) Epitope mapping of monoclonal antibodies to the paired helical filaments of Alzheimer's disease: identification of phosphorylation sites in tau protein. Biochem J 301(Pt 3):871–877

    PubMed  CAS  Google Scholar 

  • Hedstrom KL, Ogawa Y, Rasband MN (2008) AnkyrinG is required for maintenance of the axon initial segment and neuronal polarity. J Cell Biol 183:635–640

    Article  PubMed  CAS  Google Scholar 

  • Heidenreich M, Lechner SG, Vardanyan V, Wetzel C, Cremers CW, De Leenheer EM, Aranguez G, Moreno-Pelayo MA, Jentsch TJ, Lewin GR (2011) KCNQ4 K(+) channels tune mechanoreceptors for normal touch sensation in mouse and man. Nat Neurosci 15:138–145

    Article  PubMed  Google Scholar 

  • Hossain WA, Antic SD, Yang Y, Rasband MN, Morest DK (2005) Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea. J Neurosci 25:6857–6868

    Article  PubMed  CAS  Google Scholar 

  • King CH, Scherer SS (2012) Kv7.5 is the primary Kv7 subunit expressed in C-fibers. J Comp Neurol 520:1940–1950

    Article  PubMed  CAS  Google Scholar 

  • Kizhatil K, Davis JQ, Davis L, Hoffman J, Hogan BL, Bennett V (2007) Ankyrin-G is a molecular partner of E-cadherin in epithelial cells and early embryos. J Biol Chem 282:26552–26561

    Article  PubMed  CAS  Google Scholar 

  • Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11:178–186

    Article  PubMed  CAS  Google Scholar 

  • Kordeli E, Lambert S, Bennett V (1995) AnkyrinG. A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. J Biol Chem 270:2352–2359

    Article  PubMed  CAS  Google Scholar 

  • Kunimoto M (1995) A neuron-specific isoform of brain ankyrin, 440-kD ankyrinB, is targeted to the axons of rat cerebellar neurons. J Cell Biol 131:1821–1829

    Article  PubMed  CAS  Google Scholar 

  • Lambert S, Davis JQ, Bennett V (1997) Morphogenesis of the node of Ranvier: co-clusters of ankyrin and ankyrin-binding integral proteins define early developmental intermediates. J Neurosci 17:7025–7036

    PubMed  CAS  Google Scholar 

  • Lee G, Abdi K, Jiang Y, Michaely P, Bennett V, Marszalek PE (2006) Nanospring behaviour of ankyrin repeats. Nature 440:246–249

    Article  PubMed  CAS  Google Scholar 

  • Lux SE, Tse WT, Menninger JC, John KM, Harris P, Shalev O, Chilcote RR, Marchesi SL, Watkins PC, Bennett V et al (1990) Hereditary spherocytosis associated with deletion of human erythrocyte ankyrin gene on chromosome 8. Nature 345:736–739

    Article  PubMed  CAS  Google Scholar 

  • Lysakowski A, Gaboyard-Niay S, Calin-Jageman I, Chatlani S, Price SD, Eatock RA (2011) Molecular microdomains in a sensory terminal, the vestibular calyx ending. J Neurosci 31:10101–10114

    Article  PubMed  CAS  Google Scholar 

  • Menegoz M, Gaspar P, Le Bert M, Galvez T, Burgaya F, Palfrey C, Ezan P, Arnos F, Girault JA (1997) Paranodin, a glycoprotein of neuronal paranodal membranes. Neuron 19:319–331

    Article  PubMed  CAS  Google Scholar 

  • Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, Song LS, Haurogne K, Kyndt F, Ali ME, Rogers TB, Lederer WJ, Escande D, Le Marec H, Bennett V (2003) Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421:634–639

    Article  PubMed  CAS  Google Scholar 

  • Mohler PJ, Davis JQ, Bennett V (2005) Ankyrin-B coordinates the Na/K ATPase, Na/Ca exchanger, and InsP3 receptor in a cardiac T-tubule/SR microdomain. PLoS Biol 3:e423

    Article  PubMed  Google Scholar 

  • Mohler PJ, Le Scouarnec S, Denjoy I, Lowe JS, Guicheney P, Caron L, Driskell IM, Schott JJ, Norris K, Leenhardt A, Kim RB, Escande D, Roden DM (2007) Defining the cellular phenotype of “ankyrin-B syndrome” variants: human ANK2 variants associated with clinical phenotypes display a spectrum of activities in cardiomyocytes. Circulation 115:432–441

    Article  PubMed  Google Scholar 

  • Munger BL, Ide C (1988) The structure and function of cutaneous sensory receptors. Arch Histol Cytol 51:1–34

    Article  PubMed  CAS  Google Scholar 

  • Ogawa Y, Schafer DP, Horresh I, Bar V, Hales K, Yang Y, Susuki K, Peles E, Stankewich MC, Rasband MN (2006) Spectrins and ankyrinB constitute a specialized paranodal cytoskeleton. J Neurosci 26:5230–5239

    Article  PubMed  CAS  Google Scholar 

  • Otto E, Kunimoto M, McLaughlin T, Bennett V (1991) Isolation and characterization of cDNAs encoding human brain ankyrins reveal a family of alternatively spliced genes. J Cell Biol 114:241–253

    Article  PubMed  CAS  Google Scholar 

  • Persson AK, Black JA, Gasser A, Cheng X, Fischer TZ, Waxman SG (2010) Sodium–calcium exchanger and multiple sodium channel isoforms in intra-epidermal nerve terminals. Mol Pain 6:84

    PubMed  CAS  Google Scholar 

  • Poliak S, Peles E (2003) The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 4:968–980

    Article  PubMed  CAS  Google Scholar 

  • Rasband MN (2010) The axon initial segment and the maintenance of neuronal polarity. Nat Rev Neurosci 11:552–562

    Article  PubMed  CAS  Google Scholar 

  • Rasband MN (2011) Composition, assembly, and maintenance of excitable membrane domains in myelinated axons. Semin Cell Dev Biol 22:178–184

    Google Scholar 

  • Rasband MN, Peles E, Trimmer JS, Levinson SR, Lux SE, Shrager P (1999) Dependence of nodal sodium channel clustering on paranodal axoglial contact in the developing CNS. J Neurosci 19:7516–7528

    PubMed  CAS  Google Scholar 

  • Salzer JL (2003) Polarized domains of myelinated axons. Neuron 40:297–318

    Article  PubMed  CAS  Google Scholar 

  • Schmelz M (2011) Neuronal sensitivity of the skin. Eur J Dermatol 21(Suppl 2):43–47

    PubMed  Google Scholar 

  • Scotland P, Zhou D, Benveniste H, Bennett V (1998) Nervous system defects of AnkyrinB (−/−) mice suggest functional overlap between the cell adhesion molecule L1 and 440-kD AnkyrinB in premyelinated axons. J Cell Biol 143:1305–1315

    Article  PubMed  CAS  Google Scholar 

  • Sobotzik JM, Sie JM, Politi C, Del Turco D, Bennett V, Deller T, Schultz C (2009) AnkyrinG is required to maintain axo-dendritic polarity in vivo. Proc Natl Acad Sci USA 106:17564–17569

    Article  PubMed  CAS  Google Scholar 

  • Vega JA, Garcia-Suarez O, Montano JA, Pardo B, Cobo JM (2009) The Meissner and Pacinian sensory corpuscles revisited new data from the last decade. Microsc Res Tech 72:299–309

    Article  PubMed  Google Scholar 

  • Zhou D, Lambert S, Malen PL, Carpenter S, Boland LM, Bennett V (1998) AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J Cell Biol 143:1295–1304

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Deutsche Forschungsgemeinschaft DFG Grant Schu1412/2-1 and a research grant from the Prof. Dr. Karl and Gerhard Schiller-Stiftung. We are grateful to Drs. Martin Schmelz and Otilia Obreja, Mannheim, for valuable discussions and supply of porcine skin samples. We would also like to thank Prof. Dr. Eberhard Buse and Dr. Gunnar Habermann from Covance Laboratories GmbH, Münster, for macaque tissue samples. Furthermore, we thank Richard Trauth for graphic design support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maren Engelhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelhardt, M., Vorwald, S., Sobotzik, JM. et al. Ankyrin-B structurally defines terminal microdomains of peripheral somatosensory axons. Brain Struct Funct 218, 1005–1016 (2013). https://doi.org/10.1007/s00429-012-0443-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0443-0

Keywords

Navigation