Skip to main content

Vestibular inputs modulate somatosensory cortical processing

Abstract

The vestibular system is unique among the senses because of the entirely multisensory nature of its cortical projections. Neuroanatomical and neuroimaging studies show that vestibular stimulation activates somatosensory areas, and particularly the so-called parieto-insular vestibular cortex (PIVC) in the monkey, while deactivating visual areas. Further, recent psychophysical studies showed that vestibular stimulation facilitates detection of electrocutaneous stimuli, suggesting a vestibular-somatosensory perceptual interaction. However, the functional mechanism underlying this perceptual facilitation remains unclear. We therefore recorded somatosensory potentials evoked by left median nerve stimulation, before and immediately after left cold caloric vestibular stimulation (CVS), in a small-scale study of eight healthy volunteers. CVS selectively enhanced the N80 component recorded over both ipsilateral and contralateral somatosensory areas, without significantly affecting earlier or later components. Interestingly, the N80 component has been localised to the parietal operculum, which includes the human homologue of the monkey PIVC, and is thus a prime neuroanatomical candidate for vestibular-somatosensory convergence. As a control, we measured visual evoked potentials to reversing checkerboard patterns and found no effects of vestibular stimulation. This rules out explanations based on indirect effects of vestibular modulations, such as general arousal or supramodal spatial attention. We believe our results provide the first clue linking brain structure to function for the interaction between vestibular and somatosensory systems.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

CVS:

Caloric vestibular stimulation

SEPs:

Somatosensory evoked potentials

VEPs:

Visual evoked potentials

SII:

Secondary somatosensory cortex

PIVC:

Parieto insular vestibular cortex

EOG:

Electroculogram

EEG:

Electroencephalogram

References

  • Akbarian S, Berndl K, Grüsser OJ, Guldin W, Pause M, Schreiter U (1988) Responses of single neurons in the parietoinsular vestibular cortex of primates. Ann N Y Acad Sci 545:187–202

    Article  PubMed  CAS  Google Scholar 

  • Allison T, McCarthy G, Wood CC, Darcey TM, Spencer DD, Williamson PD (1989) Human cortical potentials evoked by stimulation of the median nerve. I. Cytoarchitectonic areas generating short-latency activity. J Neurophysiol 62:694–710

    PubMed  CAS  Google Scholar 

  • Allison T, McCarthy G, Wood CC, Jones SJ (1991) Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain 114:2465–2503

    Article  PubMed  Google Scholar 

  • Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 85:886–899

    PubMed  CAS  Google Scholar 

  • Berthoz A (1996) How does the cerebral cortex process and utilize vestibular signals. In: Halmagyi GM, Baloh RW (eds) Disorders of the vestibular system. Oxford University Press, Oxford, pp 113–125

    Google Scholar 

  • Bottini G, Sterzi R, Paulesu E, Vallar G, Cappa SF, Erminio F, Passingham RE, Frith CD, Frackowiak RS (1994) Identification of the central vestibular projections in man: a positron emission tomography activation study. Exp Brain Res 99:164–169

    Article  PubMed  CAS  Google Scholar 

  • Bottini G, Paulesu E, Sterzi R, Warburton E, Wise RJ, Vallar G, Frackowiak RS, Frith CD (1995) Modulation of conscious experience by peripheral sensory stimuli. Nature 376:778–781

    Article  PubMed  CAS  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. J Neurosci Methods 134:9–21

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Weiss PH, Amunts K, Fink GR, Zilles K (2006) Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping. Hum Brain Mapp 27:611–621

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K, Behrens TE (2010) Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J Neurosci 30:6409–6421

    Google Scholar 

  • Eimer M, Forster B (2003) The spatial distribution of attentional selectivity in touch: evidence from somatosensory ERP components. Clin Neurophysiol 114:1298–1306

    Article  PubMed  Google Scholar 

  • Emri M, Kisely M, Lengyel Z, Balkay L, Márián T, Mikó L, Berényi E, Sziklai I, Trón L, Tóth A (2003) Cortical projection of peripheral vestibular signalling. J Neurophysiol 89:2639–2646

    Article  PubMed  Google Scholar 

  • Fasold O, von Brevern M, Kuhberg M, Ploner CJ, Villringer A, Lempert, Wenzel R (2002) Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging. Neuroimage 17:1384–1393

  • Ferrè ER, Sedda A, Gandola M, Bottini G (2011a) How the vestibular system modulates tactile perception in normal subjects: a behavioural and physiological study. Exp Brain Res 208:29–38

    Article  PubMed  Google Scholar 

  • Ferrè ER, Bottini G, Haggard P (2011b) Vestibular modulation of somatosensory perception. Eur J Neurosci 34:1337–1344

    Article  PubMed  Google Scholar 

  • Frot M, Mauguière F (1999) Timing and spatial distribution of somatosensory responses recorded in the upper bank of the sylvian fissure (SII area) in humans. Cereb Cortex 9:854–863

    Article  PubMed  CAS  Google Scholar 

  • García-Larrea L, Lukaszewicz AC, Mauguière F (1995) Somatosensory responses during selective spatial attention: The N120-to-N140 transition. Psychophysiology 32:526–537

    Article  PubMed  Google Scholar 

  • Grüsser OJ, Pause M, Schreiter U (1990) Localization and responses of neurones in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis). J Physiol 430:537–557

    PubMed  Google Scholar 

  • Guldin WO, Grüsser OJ (1998) Is there a vestibular cortex? Trends Neurosci 21:254–259

    Article  PubMed  CAS  Google Scholar 

  • Hämäläinen H, Kekoni J, Sams M, Reinikainen K, Näätänen R (1990) Human somatosensory evoked potential to mechanical pulses and vibration: contribution of SI and SII cortices to P50 and P100 components. Electroencephalogr Clin Neurophysiol 75:13–21

    Article  PubMed  Google Scholar 

  • Hari R, Reinikainen K, Kaukoranta E, Hämäläinen M, Ilmoniemi R, Penttinen A, Salminen J, Teszner D (1984) Somatosensory evoked cerebral magnetic fields from SI and SII in man. Electroencephalogr Clin Neurophysiol 57:254–263

    Article  PubMed  CAS  Google Scholar 

  • Hari R, Karhu J, Hämäläinen M, Knuutila J, Salonen O, Sams M, Vilkman V (1993) Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5:724–734

    Article  PubMed  CAS  Google Scholar 

  • Iwamura Y, Iriki A, Tanaka M (1994) Bilateral hand representation in the postcentral somatosensory cortex. Nature 369:554–556

    Article  PubMed  CAS  Google Scholar 

  • Jung P, Baumgärtner U, Stoeter P, Treede RD (2009) Structural and functional asymmetry in the human parietal opercular cortex. J Neurophysiol 101:3246–3257

    Article  PubMed  Google Scholar 

  • Kakigi R (1994) Somatosensory evoked magnetic fields following median nerve stimulation. Neurosci Res 20:165–174

    Article  PubMed  CAS  Google Scholar 

  • Karhu J, Tesche CD (1999) Simultaneous early processing of sensory input in human primary (SI) and secondary (SII) somatosensory cortices. J Neurophysiol 81:2017–2025

    PubMed  CAS  Google Scholar 

  • Miller SM, Liu GB, Ngo TT, Hooper G, Riek S, Carson RG, Pettigrew JD (2000) Interhemispheric switching mediates perceptual rivalry. Curr Biol 10:383–392

    Article  PubMed  CAS  Google Scholar 

  • Naito Y, Tateya I, Hirano S, Inoue M, Funabiki K, Toyoda H, Ueno M, Ishizu K, Nagahama Y, Fukuyama H, Ito J (2003) Cortical correlates of vestibulo-ocular reflex modulation: a PET study. Brain 126:1562–1578

    Article  PubMed  Google Scholar 

  • Ngo TT, Liu GB, Tilley AJ, Pettigrew JD, Miller SM (2007) Caloric vestibular stimulation reveals discrete neural mechanisms for coherence rivalry and eye rivalry: a meta-rivalry model. Vision Res 47:2685–2699

    Article  PubMed  Google Scholar 

  • Ngo TT, Liu GB, Tilley AJ, Pettigrew JD, Miller SM (2008) The changing face of perceptual rivalry. Brain Res Bull 75:610–618

    Article  PubMed  Google Scholar 

  • Simões C, Hari R (1999) Relationship between responses to contra- and ipsilateral stimuli in the human second somatosensory cortex SII. Neuroimage 10:408–416

    Article  PubMed  Google Scholar 

  • Vallar G, Sterzi R, Bottini G, Cappa S, Rusconi ML (1990) Temporary remission of left hemianesthesia after vestibular stimulation. A sensory neglect phenomenon. Cortex 26:123–131

    PubMed  CAS  Google Scholar 

  • Vallar G, Bottini G, Rusconi ML, Sterzi R (1993) Exploring somatosensory hemineglect by vestibular stimulation. Brain 116:71–86

    Article  PubMed  Google Scholar 

  • Waberski TD, Buchner H, Perkhun M, Gobbelé R, Wagner M, Kücker W, Silny J (1999) N30 and the effect of explorative finger movements: a model of the contribution of the motor cortex to early somatosensory potentials. Clin Neurophysiol 110:1589–1600

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Writing of this article was supported by a Bial Foundation bursary (215/10) to PH. Additional support was provided by EU FP7 project VERE, and a Leverhulme Trust Major Research Fellowship to PH. E.R.F. was supported by a PhD program of the University of Pavia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Haggard.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferrè, E.R., Bottini, G. & Haggard, P. Vestibular inputs modulate somatosensory cortical processing. Brain Struct Funct 217, 859–864 (2012). https://doi.org/10.1007/s00429-012-0404-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0404-7

Keywords

  • Vestibular system
  • Somatosensory evoked potentials
  • Visual evoked potentials
  • Multisensory interaction