Skip to main content
Log in

Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The transcription factor Pax6 has been reported to specify neural progenitor cell fates during development and maintain neuronal commitments in the adult. The spatiotemporal patterns of Pax6 expression were examined in sagittal and horizontal sections of the embryonic, postnatal, and adult brains using immunohistochemistry and double immunolabeling. The proportion of Pax6-immunopositive cells in various parts of the adult brain was estimated using the isotropic fractionator methodology. It was shown that at embryonic day 11 (E11) Pax6 was robustly expressed in the proliferative neuroepithelia of the ventricular zone in the forebrain and hindbrain, and in the floor and the mesencephalic reticular formation (mRt) in the midbrain. At E12, its expression emerged in the nucleus of the lateral lemniscus in the rhombencephalon and disappeared from the floor of the midbrain. As neurodevelopment proceeds, the expression pattern of Pax6 changes from the mitotic germinal zone in the ventricular zone to become extensively distributed in cell groups in the forebrain and hindbrain, and the expression persisted in the mRt. The majority of Pax6-positive cell groups were maintained until adult life, but the intensity of Pax6 expression became much weaker. Pax6 expression was maintained in the mitotic subventricular zone in the adult brain, but not in the germinal region dentate gyrus in the adult hippocampus. There was no obvious colocalization of Pax6 and NeuN during embryonic development, suggesting Pax6 is found primarily in developing progenitor cells. In the adult brain, however, Pax6 maintains neuronal features of some subtypes of neurons, as indicated by 97.1% of Pax6-positive cells co-expressing NeuN in the cerebellum, 40.7% in the olfactory bulb, 38.3% in the cerebrum, and 73.9% in the remaining brain except the hippocampus. Differentiated tyrosine hydroxylase (TH) neurons were observed in the floor of the E11 midbrain where Pax6 was also expressed, but no obvious colocaliztion of TH and Pax6 was detected. No Pax6 expression was observed in TH-expressing areas in the midbrain at E12, E14, and postnatal day 1. These results support the notion that Pax6 plays pivotal roles in specifying neural progenitor cell commitments and maintaining certain mature neuronal fates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

3V:

Third ventricle

4V:

Fourth ventricle

5PC:

Motor trigeminal nucleus, parvicellular part

AA:

Anterior amygdaloid area

Amg:

Amygdala

AO:

Anterior olfactory nucleus

AOP:

Anterior olfactory area posterior part

APT:

Anterior pretectal nucleus

BL:

Basolateral amygdaloid nucleus

BM:

Basomedial amygdaloid nucleus

Cb:

Cerebellum

Ce:

Central amygdaloid nucleus

Ceph:

Cephalic flexure

CG:

Central gray

Cx:

Cortex

DC:

Dorsal cochlear nucleus

DG:

Dentate gyrus

Dien:

Diencephalon

DLL:

Dorsal nucleus of the lateral lemniscus

DR:

Dorsal raphe nucleus

DTg:

Dorsal tegmental nucleus

DTT:

Dorsal tenia tecta

ECu:

External cuneate nucleus

EGL:

External granular layer of developing cerebellum

EP:

Entopeduncular nucleus

E/OV:

Ependymal and subendymal layer/olfactory ventricle

F:

Nucleus of the fields of Forel

FovIs:

Fovea isthmus

Gi:

Gigantocellular reticular nucleus

Gl:

Glomerular layer of the olfactory bulb

GP:

Globus pallidus

GrC:

Granule cell layer of cochlear nuclei

HDB:

Nucleus of the horizontal limb of the diagonal band

I:

Intercalated nuclei of the amygdala

IEn:

Intermediate endopiriform nucleus

InC:

Interstitial nucleus of Cajal

IO:

Inferior olivary nucleus

Is:

Isthmus

isRt:

isthmic reticular formation

JPLH:

Juxtaparaventricular part of lateral hypothalamus

La:

Lateral amygdaloid nucleus

LC:

Locus coeruleus

LD:

Laterodorsal thalamic nucleus

LDTg:

Laterodorsal tegmental nucleus

LHb:

Lateral habenular nucleus

Li:

Linear nucleus

LL:

Nucleus of the lateral lemniscus

LP:

Lateral posterior thalamic nucleus

LPO:

Lateral preoptic area

LRt:

Lateral reticular nucleus

LSI:

Lateral septal nucleus, intermediate part

LV:

Lateral ventricle

MCPC:

Magnocellular nucleus of the posterior commissure

Me:

Medial amygdaloid nucleus

Mesen:

Mesencephalon

MHb:

Medial habenular nucleus

MnR:

Median raphe nucleus

mRt:

mesencephalic reticular formation

MS:

Medial septal nucleus

MVe:

Medial vestibular nucleus

MVPO:

Medioventral periolivary nucleus

PAG:

Periaqueductal gray

PaXi:

Paraxiphoid nucleus of thalamus

Pc:

Posterior commissure

PCom:

Nucleus of the posterior commissure

PDTg:

Posterodorsal tegmental nucleus

Pir:

Piriform cortex

PL:

Paralemniscal nucleus

PLH:

Peduncular part of lateral hypothalamus

Pn:

Pontine nuclei

PrC:

Precommissural nucleus

PrG:

Pregeniculate nucleus

PrTh:

Prethalamus (prosomere 3)

PrThE:

Prethalamic eminence

Ptec:

Pretectum

Rhomb:

Rhombencephalon

Rt:

Reticular thalamic nucleus

RtTg:

Reticulotegmental nucleus of the pons

SN:

Substantia nigra

SPFPC:

Subparafascicular thalamic nucleus, parvicellular part

SubG:

Subgeniculate nucleus

SuVe:

Superior vestibular nucleus

Telen:

Telencephalon

Tu:

Olfactory tubercle

VC:

Ventral cochlear nucleus

VCA:

Ventral cochlear nucleus, anterior part

VDB:

Nucleus of the vertical limb of the diagonal band

VEn:

Ventral endopiriform claustrum

VP:

Ventral pallidum

VTT:

Ventral tenia tecta

VTA:

Ventral tegmental area

VZ:

Ventricular zone

X:

Nucleus X

ZI:

Zona incerta

References

  • Ashwell KW, Paxinos G (2008) Atlas of the developing rat nervous system, 3rd edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Backman M, Machon O, Mygland L, van den Bout CJ, Zhong W, Taketo MM, Krauss S (2005) Effects of canonical Wnt signaling on dorso-ventral specification of the mouse telencephalon. Dev Biol 279(1):155–168. doi:10.1016/j.ydbio.2004.12.010

    Article  PubMed  CAS  Google Scholar 

  • Burri M, Tromvoukis Y, Bopp D, Frigerio G, Noll M (1989) Conservation of the paired domain in metazoans and its structure in three isolated human genes. EMBO J 8(4):1183–1190

    PubMed  CAS  Google Scholar 

  • Callaerts P, Halder G, Gehring WJ (1997) PAX-6 in development and evolution. Annu Rev Neurosci 20:483–532. doi:10.1146/annurev.neuro.20.1.483

    Article  PubMed  CAS  Google Scholar 

  • Franklin K, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Fu Y, Tvrdik P, Makki N, Palombi O, Machold R, Paxinos G, Watson C (2009) The precerebellar linear nucleus in the mouse defined by connections, immunohistochemistry, and gene expression. Brain Res 1271:49–59. doi:10.1016/j.brainres.2009.02.068

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Tvrdik P, Makki N, Paxinos G, Watson C (2011) Precerebellar cell groups in the hindbrain of the mouse defined by retrograde tracing and correlated with cumulative Wnt1-cre genetic labeling. Cerebellum 10(3):570–584. doi:10.1007/s12311-011-0266-1

    Article  PubMed  Google Scholar 

  • Georgala PA, Carr CB, Price DJ (2011) The role of Pax6 in forebrain development. Dev Neurobiol 71(8):690–709. doi:10.1002/dneu.20895

    Article  PubMed  CAS  Google Scholar 

  • Hauptmann G, Gerster T (2000) Regulatory gene expression patterns reveal transverse and longitudinal subdivisions of the embryonic zebrafish forebrain. Mech Dev 91(1–2):105–118

    Article  PubMed  CAS  Google Scholar 

  • Herculano-Houzel S, Lent R (2005) Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci: Official J Soc Neurosci 25(10):2518–2521. doi:10.1523/jneurosci.4526-04.2005

    Article  CAS  Google Scholar 

  • Hufnagel RB, Riesenberg AN, Saul SM, Brown NL (2007) Conserved regulation of Math5 and Math1 revealed by Math5-GFP transgenes. Mol Cell Neurosci 36(4):435–448. doi:10.1016/j.mcn.2007.08.006

    Article  PubMed  CAS  Google Scholar 

  • Kawakami A, Kimura-Kawakami M, Nomura T, Fujisawa H (1997) Distributions of PAX6 and PAX7 proteins suggest their involvement in both early and late phases of chick brain development. Mech Dev 66(1–2):119–130

    Article  PubMed  CAS  Google Scholar 

  • Landsberg RL, Awatramani RB, Hunter NL, Farago AF, DiPietrantonio HJ, Rodriguez CI, Dymecki SM (2005) Hindbrain rhombic lip is comprised of discrete progenitor cell populations allocated by Pax6. Neuron 48(6):933–947. doi:10.1016/j.neuron.2005.11.031

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Paxinos G, Watson C (2010) Projections from the brain to the spinal cord in the mouse. Brain Struct Funct 215(3–4):159–186. doi:10.1007/s00429-010-0281-x

    PubMed  Google Scholar 

  • Liu A, Joyner AL (2001) Early anterior/posterior patterning of the midbrain and cerebellum. Annu Rev Neurosci 24:869–896. doi:10.1146/annurev.neuro.24.1.869

    Article  PubMed  CAS  Google Scholar 

  • Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48(1):17–24. doi:10.1016/j.neuron.2005.08.028

    Article  PubMed  CAS  Google Scholar 

  • Machon O, Kreslova J, Ruzickova J, Vacik T, Klimova L, Fujimura N, Lachova J, Kozmik Z (2010) Lens morphogenesis is dependent on Pax6-mediated inhibition of the canonical Wnt/beta-catenin signaling in the lens surface ectoderm. Genesis 48(2):86–95. doi:10.1002/dvg.20583

    PubMed  CAS  Google Scholar 

  • Manuel M, Price D (2005) Role of Pax6 in forebrain regionalization. Brain Res Bull 66(4–6):387–393. doi:10.1016/j.brainresbull.2005.02.006

    Article  PubMed  CAS  Google Scholar 

  • Mastick GS, Davis NM, Andrew GL, Easter SS Jr (1997) Pax-6 functions in boundary formation and axon guidance in the embryonic mouse forebrain. Development 124(10):1985–1997

    PubMed  CAS  Google Scholar 

  • Metin C, Alvarez C, Moudoux D, Vitalis T, Pieau C, Molnar Z (2007) Conserved pattern of tangential neuronal migration during forebrain development. Development 134(15):2815–2827. doi:10.1242/dev.02869

    Article  PubMed  CAS  Google Scholar 

  • Mo Z, Zecevic N (2008) Is Pax6 critical for neurogenesis in the human fetal brain? Cereb Cortex 18(6):1455–1465. doi:10.1093/cercor/bhm181

    Article  PubMed  Google Scholar 

  • Moreno N, Rétaux S, González A (2008) Spatio-temporal expression of Pax6 in Xenopus forebrain. Brain Res 1239:92–99. doi:10.1016/j.brainres.2008.08.052

    Article  PubMed  CAS  Google Scholar 

  • Muzio L, Mallamaci A (2003) Emx1, emx2 and pax6 in specification, regionalization and arealization of the cerebral cortex. Cereb Cortex 13(6):641–647

    Article  PubMed  Google Scholar 

  • Nacher J, Varea E, Blasco-Ibanez JM, Castillo-Gomez E, Crespo C, Martinez-Guijarro FJ, McEwen BS (2005) Expression of the transcription factor Pax 6 in the adult rat dentate gyrus. J Neurosci Res 81(6):753–761. doi:10.1002/jnr.20596

    Article  PubMed  CAS  Google Scholar 

  • Noll M (1993) Evolution and role of Pax genes. Curr Opin Genet Dev 3(4):595–605

    Article  PubMed  CAS  Google Scholar 

  • Osorio J, Mazan S, Retaux S (2005) Organisation of the lamprey (Lampetra fluviatilis) embryonic brain: insights from LIM-homeodomain, Pax and hedgehog genes. Dev Biol 288(1):100–112. doi:10.1016/j.ydbio.2005.08.042

    Article  PubMed  CAS  Google Scholar 

  • Osumi N (2001) The role of Pax6 in brain patterning. Tohoku J Exp Med 193(3):163–174

    Article  PubMed  CAS  Google Scholar 

  • Osumi N, Shinohara H, Numayama-Tsuruta K, Maekawa M (2008) Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells 26(7):1663–1672. doi:10.1634/stemcells.2007-0884

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Paxinos G, Halliday G, Watson C, Koutcherov Y, Wang H (2007) Atlas of the developing mouse brain at E17.5, P0, and P6. Elsevier Academic Press, San Diego

    Google Scholar 

  • Pritz MB, Ruan YW (2009) PAX6 immunoreactivity in the diencephalon and midbrain of alligator during early development. Brain Behav Evol 73(1):1–15. doi:10.1159/000195695

    Article  PubMed  CAS  Google Scholar 

  • Puelles L, Rubenstein JL (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26(9):469–476

    Article  PubMed  CAS  Google Scholar 

  • Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein JL (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424(3):409–438

    Article  PubMed  CAS  Google Scholar 

  • Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martinez S (2007) The chick brain in stereotaxic coordinates: an atlas featuring neuromeres and mammalian homologies. Elsevier Academic Press, San Diego

    Google Scholar 

  • Sansom SN, Griffiths DS, Faedo A, Kleinjan DJ, Ruan Y, Smith J, van Heyningen V, Rubenstein JL, Livesey FJ (2009) The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS genetics 5(6):e1000511. doi:10.1371/journal.pgen.1000511

    Article  PubMed  Google Scholar 

  • Schubert FR, Lumsden A (2005) Transcriptional control of early tract formation in the embryonic chick midbrain. Development 132(8):1785–1793. doi:10.1242/dev.01731

    Article  PubMed  CAS  Google Scholar 

  • Schuller U, Rowitch DH (2007) Beta-catenin function is required for cerebellar morphogenesis. Brain Res 1140:161–169. doi:10.1016/j.brainres.2006.05.105

    Article  PubMed  Google Scholar 

  • Sillitoe R, Fu Y, Watson C (2012) Cerebellum. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier Academic Press, San Diego, pp 360–396

    Chapter  Google Scholar 

  • Spitere K, Toulouse A, O’Sullivan DB, Sullivan AM (2008) TAT-PAX6 protein transduction in neural progenitor cells: a novel approach for generation of dopaminergic neurones in vitro. Brain Res 1208:25–34. doi:10.1016/j.brainres.2008.02.065

    Article  PubMed  CAS  Google Scholar 

  • Stoykova A, Gruss P (1994) Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J Neurosci 14(3 Pt 2):1395–1412

    PubMed  CAS  Google Scholar 

  • Swanson DJ, Tong Y, Goldowitz D (2005) Disruption of cerebellar granule cell development in the Pax6 mutant, Sey mouse. Brain Res Dev Brain Res 160(2):176–193. doi:10.1016/j.devbrainres.2005.09.005

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Osumi N (2011) Pax6 regulates boundary-cell specification in the rat hindbrain. Mech Dev. doi:10.1016/j.mod.2011.04.001

  • Terzic J, Saraga-Babic M (1999) Expression pattern of PAX3 and PAX6 genes during human embryogenesis. Internat J Dev Biol 43(6):501–508

    CAS  Google Scholar 

  • Tole S, Remedios R, Saha B, Stoykova A (2005) Selective requirement of Pax6, but not Emx2, in the specification and development of several nuclei of the amygdaloid complex. J Neurosci 25(10):2753–2760. doi:10.1523/JNEUROSCI.3014-04.2005

    Article  PubMed  CAS  Google Scholar 

  • Vitalis T, Cases O, Engelkamp D, Verney C, Price DJ (2000) Defect of tyrosine hydroxylase-immunoreactive neurons in the brains of mice lacking the transcription factor Pax6. J Neurosci 20(17):6501–6516. (pii:20/17/6501)

    PubMed  CAS  Google Scholar 

  • Walther C, Gruss P (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113(4):1435–1449

    PubMed  CAS  Google Scholar 

  • Watson C (2010) The presumptive isthmic region in a mouse as defined by fgf8 expression. Brain Behav Evol 75:15

    Google Scholar 

  • Wexler EM, Paucer A, Kornblum HI, Palmer TD, Geschwind DH (2009) Endogenous Wnt signaling maintains neural progenitor cell potency. Stem Cells 27(5):1130–1141. doi:10.1002/stem.36

    Article  PubMed  CAS  Google Scholar 

  • Wrobel CN, Mutch CA, Swaminathan S, Taketo MM, Chenn A (2007) Persistent expression of stabilized beta-catenin delays maturation of radial glial cells into intermediate progenitors. Dev Biol 309(2):285–297. doi:10.1016/j.ydbio.2007.07.013

    Article  PubMed  CAS  Google Scholar 

  • Wullimann MF, Rink E (2001) Detailed immunohistology of Pax6 protein and tyrosine hydroxylase in the early zebrafish brain suggests role of Pax6 gene in development of dopaminergic diencephalic neurons. Brain Res Dev Brain Res 131(1–2):173–191

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Semba R, Ding X, Ma N, Nagahama M (2005) Discrimination of cell nuclei in early S-phase, mid-to-late S-phase, and G(2)/M-phase by sequential administration of 5-bromo-2′-deoxyuridine and 5-chloro-2′-deoxyuridine. J Histochem Cytochem 53(11):1365–1370. doi:10.1369/jhc.4A6601.2005

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Huang CT, Chen J, Pankratz MT, Xi J, Li J, Zhang S-C (2010) Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell 7(1):90–100. doi:10.1016/j.stem.2010.04.017

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Huazheng Liang, Dr. Emma Schofield, and Mr Hua Zhao for technical support. This work was supported by the Christopher and Dana Reeve Foundation and an Australia Fellowship awarded to Professor George Paxinos by the National Health and Medical Research Council (NHMRC) (466028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Watson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, D., Fu, Y., Paxinos, G. et al. Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice. Brain Struct Funct 218, 353–372 (2013). https://doi.org/10.1007/s00429-012-0397-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0397-2

Keywords

Navigation