Skip to main content
Log in

Mapping of alpha-neo-endorphin- and neurokinin B-immunoreactivity in the human brainstem

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

We have studied the distribution of alpha-neo-endorphin- or neurokinin B-immunoreactive fibres and cell bodies in the adult human brainstem with no prior history of neurological or psychiatric disease. A low density of alpha-neo-endorphin-immunoreactive cell bodies was only observed in the medullary central gray matter and in the spinal trigeminal nucleus (gelatinosa part). Alpha-neo-endorphin-immunoreactive fibres were moderately distributed throughout the human brainstem. A high density of alpha-neo-endorphin-immunoreactive fibres was found only in the solitary nucleus (caudal part), in the spinal trigeminal nucleus (caudal part), and in the gelatinosa part of the latter nucleus. Neurokinin B-immunoreactive cell bodies (low density) were found in the periventricular central gray matter, the reticular formation of the pons and in the superior colliculus. The distribution of the neurokinin-immunoreactive fibres was restricted. In general, for both neuropeptides the density of the immunoreactive fibres was low. In the human brainstem, the proenkephalin system was more widely distributed than the prodynorphin system, and the preprotachykinin A system (neurokinin A) was more widely distributed than the preprotachykinin B system (neurokinin B).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AbdNu:

Abducens nucleus

AccNu:

Nucleus of the accessory nerve

CA:

Cerebral aqueduct

CeGy:

Medullary central gray

Cegy:

Periaqueductal central gray

CEgy:

Periventricular central gray

CSNu:

Chief sensory nucleus

CSp:

Corticospinal fibres

CTT:

Central tegmental tract

DAO:

Dorsal accessory olivary nucleus

DCNu:

Dorsal cochlear nucleus

DMNu:

Dorsal motor nucleus of the vagus

FacNu:

Motor facial nucleus

FCu:

Fasciculus cuneatus

FGr:

Fasciculus gracilis

HyNu:

Motor hypoglossal nucleus

IC, CNu:

Inferior colliculus, central nucleus

IC, LZ:

Inferior colliculus, lateral zone

ISNu:

Inferior salivatory nucleus

LCNu:

Lateral cuneate nucleus

LoCer:

Locus coeruleus

LRNu:

Lateral reticular nucleus

MAO:

Medial accessory olivary nucleus

ML:

Medial lemniscus

MLF:

Medial longitudinal fascicle

MVN:

Medial vestibular nucleus

NuAm:

Nucleus ambiguus

NuCu:

Cuneate nucleus

NuGr:

Gracile nucleus

NuPp:

Nucleus prepositus hypoglossi

PCbF:

Pontocerebellar fibres

PO:

Principal part of the inferior olivary nucleus

PonNu:

Pontine nuclei

Py:

Pyramidal tract

RB:

Restiform body

RetF:

Reticular formation

SC:

Superior colliculus

SCP:

Superior cerebellar peduncle

SM:

Stria medullaris of fourth ventricle

SN:

Substantia nigra

SO:

Superior olive

SolNu:

Nucleus of the solitary tract

SolTr:

Solitary tract

SpTNu:

Spinal trigeminal nucleus

SpTNu (g):

Spinal trigeminal nucleus (gelatinosa)

SpTNu (m):

Spinal trigeminal nucleus (magnocellular)

SpTT:

Spinal trigeminal tract

SpVN:

Spinal (inferior) vestibular nucleus

TecSp:

Tectospinal tract

TriMoNu:

Trigeminal motor nucleus (caudal part)

TroNu:

Trochlear nucleus

References

  • Bouras C, Taban CH, Constantinidis J (1984) Mapping of enkephalins in the human brain. Neuroscience 12:179–190

    Article  PubMed  CAS  Google Scholar 

  • Chigr F, Najimi M, Leduque P, Charnay Y, Jordan D, Chayvialle JA, Tohyama M, Kopp N (1989) Anatomical distribution of somatostatin immunoreactivity in the infant brainstem. Neuroscience 29:615–628

    Article  PubMed  CAS  Google Scholar 

  • Cone RI, Weber E, Barchas JD, Goldstein A (1983) Regional distribution of dynorphin and neo-endorphin peptides in rat brain, spinal cord, and pituitary. J Neurosci 3:2146–2152

    PubMed  CAS  Google Scholar 

  • Coveñas R, de León M, Narváez JA, Aguirre JA, Tramu G, González-Barón S (1999) Anatomical distribution of beta-endorphin (1–27) in the cat brainstem: an immunocytochemical study. Anat Embryol 199:161–167

    Article  PubMed  Google Scholar 

  • Coveñas R, Martín F, Belda M, Smith V, Salinas P, Rivada E, Díaz-Cabiale Z, Narváez JA, Marcos P, Tramu G, González-Barón S (2003) Mapping of neurokinin-like immunoreactivity in the human brainstem. BMC Neurosci 4:3

    Article  PubMed  Google Scholar 

  • Coveñas R, Martín F, Salinas P, Rivada E, Smith V, Aguilar LA, Díaz-Cabiale Z, Narváez JA, Tramu G (2004) An immunocytochemical mapping of methionine-enkephalin-Arg6-Gly7-Leu8 in the human brainstem. Neuroscience 128:843–859

    Article  PubMed  Google Scholar 

  • Coveñas R, Mangas A, Narváez JA (2007) Introduction to neuropeptides. In: Coveñas R, Mangas A, Narváez JA (eds) Focus on neuropeptide research. Transworld Research Network, Trivandrum, pp 1–26

    Google Scholar 

  • Coveñas R, Duque E, Mangas A, Marcos P, Narváez JA (2008) Neuropeptides in the monkey (Macaca fascicularis) brainstem. In: Mangas A, Coveñas R, Geffard M (eds) Brain molecules: from vitamins to molecules for axonal guidance, Transworld Research Network, Trivandrum, pp 131–156

  • Cuadrado I, Coveñas R, Aguilar LA, Aguirre JA, Rioja J, Narváez JA (2005) Mapping of neurokinin B in the cat brainstem. Anat Embryol 210:133–143

    Article  PubMed  CAS  Google Scholar 

  • del Fiacco M, Dessi ML, Levanti MC (1984) Topographical localization of substance P in the human post-mortem brainstem. An immunohistochemical study in the newborn and adult tissue. Neuroscience 12:591–611

    Article  PubMed  Google Scholar 

  • Guntern R, Vallet PG, Bouras C, Constantinidis J (1989) An improved immunohistostaining procedure for peptides in human brain. Experientia 45:159–161

    Article  PubMed  CAS  Google Scholar 

  • Haines DE (1987) Neuroanatomy: an atlas of structures, sections and systems. Urban and Schwarzenberg, Baltimore

    Google Scholar 

  • Lucas LR, Hurley DL, Krause JE, Harlan RE (1992) Localization of the tachykinin neurokinin B precursor peptide in rat brain by immunocytochemistry and in situ hybridization. Neuroscience 51:317–345

    Article  PubMed  CAS  Google Scholar 

  • Mai JK, Stephens PH, Hopf A, Cuello AC (1986) Substance P in the human brain. Neuroscience 17:709–739

    Article  PubMed  CAS  Google Scholar 

  • Mai JK, Triepel J, Metz J (1987) Neurotensin in the human brain. Neuroscience 22:499–524

    Article  PubMed  CAS  Google Scholar 

  • Mangas A, Coveñas R, Bodet D, Duleu S, Marcos P, Geffard M (2009) Vitamins in the monkey brain: an immunocytochemical study. J Chem Neuroanat 38:1–8

    Article  PubMed  CAS  Google Scholar 

  • Marcos P, Coveñas R, Narváez JA, Tramu G, Aguirre JA, González- Barón S (1993) Alpha-neo-endorphin-like immunoreactivity in the cat brain stem. Peptides 14:1263–1269

    Article  PubMed  CAS  Google Scholar 

  • Marksteiner J, Sperk G, Krause JE (1992) Distribution of neurons expressing neurokinin B in the rat brain: immunocytochemistry and in situ hybridization. J Comp Neurol 317:341–356

    Article  PubMed  CAS  Google Scholar 

  • Maysinger D, Höllt V, Seizinger BR, Mehraein P, Pasi A, Herz A (1982) Parallel distribution of immunoreactive alpha-neo-endorphin and dynorphin in rat and human tissue. Neuropeptides 2:211–225

    Article  CAS  Google Scholar 

  • Mazzone SB, Geraghty DP (2000) Respiratory actions of tachykinins in the nucleus of the solitary tract: characterization of receptors using selective agonists and antagonists. Br J Pharmacol 129:1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Merchenthaler I, Maderdrut JL, O’Harte F, Conlon JM (1992) Localization of neurokinin B in the central nervous system of the rat. Peptide 13:815–829

    CAS  Google Scholar 

  • Mileusnic D, Lee JM, Magnuson DJ, Hejna MJ, Krause JE, Lorens JB, Lorens SA (1999a) Neurokinin-3 receptor distribution in rat and human brain: an immunohistochemical study. Neuroscience 89:1269–1290

    Article  PubMed  CAS  Google Scholar 

  • Mileusnic D, Magnuson DJ, Hejna MJ, Lorens JB, Lorens SA, Lee JM (1999b) Age and species-dependent differences in the neurokinin B system in rat and human brain. Neurobiol Aging 20:19–35

    Article  PubMed  CAS  Google Scholar 

  • Nomura H, Shiosaka S, Tohyama M (1987) Distribution of substance P-like immunoreactive structures in the brainstem of the adult human brain: an immunocytochemical study. Brain Res 24:365–370

    Article  Google Scholar 

  • Palkovits M (1988) Neuropeptides in the brain. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology, vol 10. Raven Press, New York, pp 1–44

    Google Scholar 

  • Palkovits M, Browstein MJ, Zamir N (1983) Immunoreactive dynorphyn and alpha-neo-endorphin in rat hypothalamo-neurohypophyseal system. Brain Res 278:258–261

    Article  PubMed  CAS  Google Scholar 

  • Pesini P, Pego-Reigosa R, Tramu G, Coveñas R (2001) Distribution of alpha- neo-endorphin immunoreactivity in the diencephalon and the brainstem of the dog. J Chem Neuroanat 22:251–262

    Article  PubMed  CAS  Google Scholar 

  • Picard P, Regoli D, Couture R (1994) Cardiovascular and behavioural effect of centrally administered tachykinins in the rat: characterization of receptors with selective antagonists. Br J Pharmacol 112:240–249

    Article  PubMed  CAS  Google Scholar 

  • Rance NE, Krajewski SJ, Smith MA, Cholanian M, Dacks PA (2010) Neurokinin B and the hypothalamic regulation of reproduction. Brain Res 1364:116–128

    Article  PubMed  CAS  Google Scholar 

  • Rikard-Bell GC, Törk I, Sullivan C, Scheibner T (1990) Distribution of substance P-like immunoreactive fibres and terminals in the medulla oblongata of the human infant. Neuroscience 34:133–148

    Article  PubMed  CAS  Google Scholar 

  • Sánchez L, Coveñas R, Aguirre JA, Narváez JA, Gómez A, Tramu G (2005) Mapping of tachykinins in the cat spinal cord. Arch Ital Biol 143:29–50

    PubMed  Google Scholar 

  • Schwarzer C (2009) 30 years of dynorphins—new insights on their functions in neuropsychiatric diseases. Pharmacol Ther 123:353–370

    Article  PubMed  CAS  Google Scholar 

  • Smialowska M, Lason W, Bal A, Przewlocki R (1985) Distribution of immunoreactive α-neo-endorphin in the rat brain. Neurosci Lett 62:359–364

    Article  PubMed  CAS  Google Scholar 

  • Tateishi K, Matsuoka Y, Hamaoka T (1989) Establishment of highly specific radioimmunoassays for neurokinin A and neurokinin B and determination of tissue distribution of these peptides in rat central nervous system. Regul Peptides 24:245–257

    Article  CAS  Google Scholar 

  • Topaloglu AK, Semple RK (2011) Neurokinin B signalling in the human reproductive axis. Mol Cell Endocrinol 346:57–64

    Article  PubMed  CAS  Google Scholar 

  • Warden MK, Young WS III (1988) Distribution of cells containing mRNAs encoding substance P and neurokinin B in the rat central nervous system. J Comp Neurol 272:90–113

    Article  PubMed  CAS  Google Scholar 

  • Weber E, Roth KA, Barchas JD (1982) Immunohistochemical distribution of alpha-neo-endorphin/dynorphin neuronal systems in rat brain. Evidence for colocalization. Proc Natl Acad Sci USA 79:3062–3066

    Article  PubMed  CAS  Google Scholar 

  • Wittmann W, Schunk E, Rosskothen I, Gaburro S, Singewald N, Herzog H, Schwarzer C (2009) Prodynorphin-derived peptides are critical modulators of anxiety and regulate neurochemistry and corticosterone. Neuropsychopharmacology 34:775–785

    Article  PubMed  CAS  Google Scholar 

  • Zaphiropoulos A, Charnay Y, Vallet P, Constantinidis J, Bouras C (1991) Immunohistochemical distribution of corticotropin-like intermediate lobe peptide (CLIP) immunoreactivity in the human brain. Brain Res Bull 26:99–111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank N. Skinner for supervising the English text and Professor Gérard Tramu (University of Bordeaux I, France) for kindly providing the alpha-neo-endorphin antiserum. This work has been supported by the Ministerio de Educación y Ciencia (BFU2005-02241/BFI) and by the Ministerio de Ciencia e Innovación (BFU2008-03369/BFI), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Coveñas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duque, E., Mangas, A., Salinas, P. et al. Mapping of alpha-neo-endorphin- and neurokinin B-immunoreactivity in the human brainstem. Brain Struct Funct 218, 131–149 (2013). https://doi.org/10.1007/s00429-012-0388-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0388-3

Keywords:

Navigation