Skip to main content
Log in

Hippocampal glutamate transporter 1 (GLT-1) complex levels are paralleling memory training in the Multiple T-Maze in C57BL/6J mice

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The glutamate transporter 1 (GLT-1) is essential for glutamate uptake in the brain and associated with various psychiatric and neurological disorders. Pharmacological inhibition of GLT-1 results in memory deficits, but no study linking native GLT-1 complexes was published so far. It was therefore the aim of the study to associate this highly hydrophobic, eight transmembrane spanning domains containing transporter to memory training in the Multiple T-maze (MTM). C57BL/6J mice were used for the spatial memory training experiments, and trained mice were compared to untrained (yoked) animals. Mouse hippocampi were dissected out 6 h after training on day 4, and a total enriched membrane fraction was prepared by ultracentrifugation. Membrane proteins were separated by blue native polyacrylamide gel electrophoresis (BN-PAGE) with subsequent Western blotting against GLT-1 on these native gels. Moreover, GLT-1 complexes were identified by mass spectrometry (nano-LC-ESI-MS/MS). Animals learned the MTM task and multiple GLT-1 complexes were detected at apparent molecular weights of 242, 480 and 720 kDa on BN-PAGE Western blotting. GLT-1 complex levels were significantly higher in the trained group as compared to yoked controls, and antibody specificity was verified by immunoblotting on multidimensional gels. Hippocampal GLT-1 was unambiguously identified by mass spectrometry with high sequence coverage, and glycosylation was observed. It is revealed that increased GLT-1 complex levels are paralleling and are linked to spatial memory training. We provide evidence that signal termination, represented by the excitatory amino acid transporter GLT-1 complexes, is involved in spatial memory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agnati LF, Ferre S, Burioni R, Woods A, Genedani S, Franco R, Fuxe K (2005) Existence and theoretical aspects of homomeric and heteromeric dopamine receptor complexes and their relevance for neurological diseases. Neuromolecular Med 7:61–78

    Article  PubMed  CAS  Google Scholar 

  • Amara SG, Fontana AC (2002) Excitatory amino acid transporters: keeping up with glutamate. Neurochem Int 41:313–318

    Article  PubMed  CAS  Google Scholar 

  • Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14

    Article  PubMed  CAS  Google Scholar 

  • Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG (1994) Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 14:5559–5569

    PubMed  CAS  Google Scholar 

  • Autry AE, Grillo CA, Piroli GG, Rothstein JD, McEwen BS, Reagan LP (2006) Glucocorticoid regulation of GLT-1 glutamate transporter isoform expression in the rat hippocampus. Neuroendocrinology 83:371–379

    Article  PubMed  CAS  Google Scholar 

  • Ballif BA, Carey GR, Sunyaev SR, Gygi SP (2008) Large-scale identification and evolution indexing of tyrosine phosphorylation sites from murine brain. J Proteome Res 7:311–318

    Article  PubMed  CAS  Google Scholar 

  • Baucum AJ 2nd, Rau KS, Riddle EL, Hanson GR, Fleckenstein AE (2004) Methamphetamine increases dopamine transporter higher molecular weight complex formation via a dopamine- and hyperthermia-associated mechanism. J Neurosci 24:3436–3443

    Article  PubMed  CAS  Google Scholar 

  • Bauman AL, Apparsundaram S, Ramamoorthy S, Wadzinski BE, Vaughan RA, Blakely RD (2000) Cocaine and antidepressant-sensitive biogenic amine transporters exist in regulated complexes with protein phosphatase 2A. J Neurosci 20:7571–7578

    PubMed  CAS  Google Scholar 

  • Bechtholt-Gompf AJ, Walther HV, Adams MA, Carlezon WA Jr, Ongur D, Cohen BM (2010) Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacology 35:2049–2059

    Article  PubMed  CAS  Google Scholar 

  • Brooks-Kayal AR, Munir M, Jin H, Robinson MB (1998) The glutamate transporter, GLT-1, is expressed in cultured hippocampal neurons. Neurochem Int 33:95–100

    Article  PubMed  CAS  Google Scholar 

  • Campbell SL, Hablitz JJ (2004) Glutamate transporters regulate excitability in local networks in rat neocortex. Neuroscience 127:625–635

    Article  PubMed  CAS  Google Scholar 

  • Chu K, Lee ST, Sinn DI, Ko SY, Kim EH, Kim JM, Kim SJ, Park DK, Jung KH, Song EC, Lee SK, Kim M, Roh JK (2007) Pharmacological induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregulation. Stroke 38:177–182

    Article  PubMed  CAS  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  • Domercq M, Etxebarria E, Perez-Samartin A, Matute C (2005) Excitotoxic oligodendrocyte death and axonal damage induced by glutamate transporter inhibition. Glia 52:36–46

    Article  PubMed  Google Scholar 

  • Dunlop J, Lou Z, McIlvain HB (1999a) Steroid hormone-inducible expression of the GLT-1 subtype of high-affinity l-glutamate transporter in human embryonic kidney cells. Biochem Biophys Res Commun 265:101–105

    Article  PubMed  CAS  Google Scholar 

  • Dunlop J, Lou Z, Zhang Y, McIlvain HB (1999b) Inducible expression and pharmacology of the human excitatory amino acid transporter 2 subtype of L-glutamate transporter. Br J Pharmacol 128:1485–1490

    Article  PubMed  CAS  Google Scholar 

  • Fattorini G, Melone M, Bragina L, Candiracci C, Cozzi A, Pellegrini Giampietro DE, Torres-Ramos M, Perez-Samartin A, Matute C, Conti F (2008) GLT-1 expression and Glu uptake in rat cerebral cortex are increased by phencyclidine. Glia 56:1320–1327

    Article  PubMed  Google Scholar 

  • Furuta A, Rothstein JD, Martin LJ (1997) Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J Neurosci 17:8363–8375

    PubMed  CAS  Google Scholar 

  • Gebhardt FM, Mitrovic AD, Gilbert DF, Vandenberg RJ, Lynch JW, Dodd PR (2010) Exon-skipping splice variants of excitatory amino acid transporter-2 (EAAT2) form heteromeric complexes with full-length EAAT2. J Biol Chem 285:31313–31324

    Article  PubMed  CAS  Google Scholar 

  • Gendreau S, Voswinkel S, Torres-Salazar D, Lang N, Heidtmann H, Detro-Dassen S, Schmalzing G, Hidalgo P, Fahlke C (2004) A trimeric quaternary structure is conserved in bacterial and human glutamate transporters. J Biol Chem 279:39505–39512

    Article  PubMed  CAS  Google Scholar 

  • Genedani S, Guidolin D, Leo G, Filaferro M, Torvinen M, Woods AS, Fuxe K, Ferre S, Agnati LF (2005) Computer-assisted image analysis of caveolin-1 involvement in the internalization process of adenosine A2A-dopamine D2 receptor heterodimers. J Mol Neurosci 26:177–184

    Article  PubMed  CAS  Google Scholar 

  • Ghafari M, Falsafi SK, Hoeger H, Lubec G (2011) Hippocampal levels of GluR1 and GluR2 complexes are modulated by training in the Multiple T-Maze in C57BL/6J mice. Brain Struct Funct (in press), doi:10.1007/s00429-011-0335-8

  • Gonzalez MI, Robinson MB (2004) Neurotransmitter transporters: why dance with so many partners? Curr Opin Pharmacol 4:30–35

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez MI, Susarla BT, Robinson MB (2005) Evidence that protein kinase Calpha interacts with and regulates the glial glutamate transporter GLT-1. J Neurochem 94:1180–1188

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez–Gonzalez IM, Garcia-Tardon N, Gimenez C, Zafra F (2009) Splice variants of the glutamate transporter GLT1 form hetero-oligomers that interact with PSD-95 and NMDA receptors. J Neurochem 110:264–274

    Article  PubMed  Google Scholar 

  • Hadlock GC, Baucum AJ II, King JL, Horner KA, Cook GA, Gibb JW, Wilkins DG, Hanson GR, Fleckenstein AE (2009) Mechanisms underlying methamphetamine-induced dopamine transporter complex formation. J Pharmacol Exp Ther 329:169–174

    Article  PubMed  CAS  Google Scholar 

  • Hadlock GC, Chu PW, Walters ET, Hanson GR, Fleckenstein AE (2010) Methamphetamine-induced dopamine transporter complex formation and dopaminergic deficits: the role of D2 receptor activation. J Pharmacol Exp Ther 335:207–212

    Article  PubMed  CAS  Google Scholar 

  • Haugeto O, Ullensvang K, Levy LM, Chaudhry FA, Honore T, Nielsen M, Lehre KP, Danbolt NC (1996) Brain glutamate transporter proteins form homomultimers. J Biol Chem 271:27715–27722

    Article  PubMed  CAS  Google Scholar 

  • Hediger MA, Kanai Y, You G, Nussberger S (1995) Mammalian ion-coupled solute transporters. J Physiol 482:7S–17S

    Google Scholar 

  • Heo S, Lubec G (2010) Generation and characterization of a specific polyclonal antibody against the mouse serotonin receptor 1A: a state-of-the-art recommendation on how to characterize antibody specificity. Electrophoresis 31:3789–3796

    Article  PubMed  CAS  Google Scholar 

  • Heo S, Kang SU, Oehler R, Pollak A, Lubec G (2010) Mass spectrometrical analysis of the mitochondrial carrier Aralar1 from mouse hippocampus. Electrophoresis 31:1813–1821

    Article  PubMed  CAS  Google Scholar 

  • Hinoi E, Takarada T, Tsuchihashi Y, Yoneda Y (2005) Glutamate transporters as drug targets. Curr Drug Targets CNS Neurol Disord 4:211–220

    Article  PubMed  CAS  Google Scholar 

  • Huang YH, Sinha SR, Tanaka K, Rothstein JD, Bergles DE (2004) Astrocyte glutamate transporters regulate metabotropic glutamate receptor-mediated excitation of hippocampal interneurons. J Neurosci 24:4551–4559

    Article  PubMed  CAS  Google Scholar 

  • Kanai Y, Hediger MA (2004) The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Arch 447:469–479

    Article  PubMed  CAS  Google Scholar 

  • Kang SU, Lubec G (2009) Complete sequencing of GABAA receptor subunit beta 3 by a rapid technique following in-gel digestion of the protein. Electrophoresis 30:2159–2167

    Article  PubMed  CAS  Google Scholar 

  • Kang SU, Fuchs K, Sieghart W, Lubec G (2008) Gel-based mass spectrometric analysis of recombinant GABA(A) receptor subunits representing strongly hydrophobic transmembrane proteins. J Proteome Res 7:3498–3506

    Article  PubMed  CAS  Google Scholar 

  • Kang SU, Fuchs K, Sieghart W, Pollak A, Csaszar E, Lubec G (2009) Gel-based mass spectrometric analysis of a strongly hydrophobic GABAA-receptor subunit containing four transmembrane domains. Nat Protoc 4:1093–1102

    Article  PubMed  CAS  Google Scholar 

  • Kang SU, Heo S, Lubec G (2011) Mass spectrometric analysis of GABA(A) receptor subtypes and phosphorylations from mouse hippocampus. Proteomics 11:2171–2181

    Article  PubMed  CAS  Google Scholar 

  • Katagiri H, Tanaka K, Manabe T (2001) Requirement of appropriate glutamate concentrations in the synaptic cleft for hippocampal LTP induction. Eur J Neurosci 14:547–553

    Article  PubMed  CAS  Google Scholar 

  • Kirschner MA, Copeland NG, Gilbert DJ, Jenkins NA, Amara SG (1994) Mouse excitatory amino acid transporter EAAT2: isolation, characterization, and proximity to neuroexcitability loci on mouse chromosome 2. Genomics 24:218–224

    Google Scholar 

  • Lee Y, Gaskins D, Anand A, Shekhar A (2007) Glia mechanisms in mood regulation: a novel model of mood disorders. Psychopharmacology (Berl) 191:55–65

    Article  Google Scholar 

  • Li LB, Toan SV, Zelenaia O, Watson DJ, Wolfe JH, Rothstein JD, Robinson MB (2006) Regulation of astrocytic glutamate transporter expression by Akt: evidence for a selective transcriptional effect on the GLT-1/EAAT2 subtype. J Neurochem 97:759–771

    Article  PubMed  CAS  Google Scholar 

  • Lomberk G, Bensi D, Fernandez-Zapico ME, Urrutia R (2006) Evidence for the existence of an HP1-mediated subcode within the histone code. Nat Cell Biol 8:407–415

    Article  PubMed  CAS  Google Scholar 

  • Maragakis NJ, Dykes-Hoberg M, Rothstein JD (2004) Altered expression of the glutamate transporter EAAT2b in neurological disease. Ann Neurol 55:469–477

    Article  PubMed  CAS  Google Scholar 

  • Matute C, Melone M, Vallejo-Illarramendi A, Conti F (2005) Increased expression of the astrocytic glutamate transporter GLT-1 in the prefrontal cortex of schizophrenics. Glia 49:451–455

    Article  PubMed  Google Scholar 

  • McCullumsmith RE, Meador-Woodruff JH (2002) Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder. Neuropsychopharmacology 26:368–375

    Article  PubMed  CAS  Google Scholar 

  • Mennerick S, Dhond RP, Benz A, Xu W, Rothstein JD, Danbolt NC, Isenberg KE, Zorumski CF (1998) Neuronal expression of the glutamate transporter GLT-1 in hippocampal microcultures. J Neurosci 18:4490–4499

    PubMed  CAS  Google Scholar 

  • Meyer T, Ludolph AC, Morkel M, Hagemeier C, Speer A (1997) Genomic organization of the human excitatory amino acid transporter gene GLT-1. Neuroreport 8:775–777

    Google Scholar 

  • Meyer T, Munch C, Liebau S, Fromm A, Schwalenstocker B, Volkel H, Ludolph AC (1998) Splicing of the glutamate transporter EAAT2: a candidate gene of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 65:954

    Google Scholar 

  • Mukainaka Y, Tanaka K, Hagiwara T, Wada K (1995) Molecular cloning of two glutamate transporter subtypes from mouse brain. Biochim Biophys Acta 1244:233–237

    Google Scholar 

  • Munir M, Correale DM, Robinson MB (2000) Substrate-induced up-regulation of Na(+)-dependent glutamate transport activity. Neurochem Int 37:147–162

    Article  PubMed  CAS  Google Scholar 

  • Munton RP, Tweedie-Cullen R, Livingstone-Zatchej M, Weinandy F, Waidelich M, Longo D, Gehrig P, Potthast F, Rutishauser D, Gerrits B, Panse C, Schlapbach R, Mansuy IM (2007) Qualitative and quantitative analyses of protein phosphorylation in naive and stimulated mouse synaptosomal preparations. Mol Cell Proteomics 6:283–293

    PubMed  CAS  Google Scholar 

  • Nuwal T, Heo S, Lubec G, Buchner E (2011) Mass spectrometric analysis of synapsins in Drosophila melanogaster and identification of novel phosphorylation sites. J Proteome Res 10:541–550

    Article  PubMed  CAS  Google Scholar 

  • Ohnuma T, Tessler S, Arai H, Faull RL, McKenna PJ, Emson PC (2000) Gene expression of metabotropic glutamate receptor 5 and excitatory amino acid transporter 2 in the schizophrenic hippocampus. Brain Res Mol Brain Res 85:24–31

    Article  PubMed  CAS  Google Scholar 

  • Omrani A, Melone M, Bellesi M, Safiulina V, Aida T, Tanaka K, Cherubini E, Conti F (2009) Up-regulation of GLT-1 severely impairs LTD at mossy fibre–CA3 synapses. J Physiol 587:4575–4588

    Article  PubMed  CAS  Google Scholar 

  • O’Shea RD (2002) Roles and regulation of glutamate transporters in the central nervous system. Clin Exp Pharmacol Physiol 29:1018–1023

    Article  PubMed  Google Scholar 

  • Patil SS, Sunyer B, Hoger H, Lubec G (2009) Evaluation of spatial memory of C57BL/6J and CD1 mice in the Barnes maze, the Multiple T-maze and in the Morris water maze. Behav Brain Res 198:58–68

    Article  PubMed  Google Scholar 

  • Pawlak J, Brito V, Kuppers E, Beyer C (2005) Regulation of glutamate transporter GLAST and GLT-1 expression in astrocytes by estrogen. Brain Res Mol Brain Res 138:1–7

    Article  PubMed  CAS  Google Scholar 

  • Peacey E, Miller CC, Dunlop J, Rattray M (2009) The four major N- and C-terminal splice variants of the excitatory amino acid transporter GLT-1 form cell surface homomeric and heteromeric assemblies. Mol Pharmacol 75:1062–1073

    Google Scholar 

  • Pei L, Li S, Wang M, Diwan M, Anisman H, Fletcher PJ, Nobrega JN, Liu F (2010) Uncoupling the dopamine D1–D2 receptor complex exerts antidepressant-like effects. Nat Med 16:1393–1395

    Article  PubMed  CAS  Google Scholar 

  • Perego C, Vanoni C, Bossi M, Massari S, Basudev H, Longhi R, Pietrini G (2000) The GLT-1 and GLAST glutamate transporters are expressed on morphologically distinct astrocytes and regulated by neuronal activity in primary hippocampal cocultures. J Neurochem 75:1076–1084

    Article  PubMed  CAS  Google Scholar 

  • Qu S, Kanner BI (2008) Substrates and non-transportable analogues induce structural rearrangements at the extracellular entrance of the glial glutamate transporter GLT-1/EAAT2. J Biol Chem 283:26391–26400

    Article  PubMed  CAS  Google Scholar 

  • Raunser S, Haase W, Bostina M, Parcej DN, Kuhlbrandt W (2005) High-yield expression, reconstitution and structure of the recombinant, fully functional glutamate transporter GLT-1 from Rattus norvegicus. J Mol Biol 351:598–613

    Article  PubMed  CAS  Google Scholar 

  • Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI, Jin L, Watkins AM, Bergles DE, Rothstein JD (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci 27:6607–6619

    Article  PubMed  CAS  Google Scholar 

  • Robinson MB (1998) The family of sodium-dependent glutamate transporters: a focus on the GLT-1/EAAT2 subtype. Neurochem Int 33:479–491

    Article  PubMed  CAS  Google Scholar 

  • Rose EM, Koo JC, Antflick JE, Ahmed SM, Angers S, Hampson DR (2009) Glutamate transporter coupling to Na, K-ATPase. J Neurosci 29:8143–8155

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    Article  PubMed  CAS  Google Scholar 

  • Sattler R, Rothstein JD (2006) Regulation and dysregulation of glutamate transporters. Handb Exp Pharmacol 175:277–303

    Article  PubMed  CAS  Google Scholar 

  • Schmitt A, Zink M, Petroianu G, May B, Braus DF, Henn FA (2003) Decreased gene expression of glial and neuronal glutamate transporters after chronic antipsychotic treatment in rat brain. Neurosci Lett 347:81–84

    Article  PubMed  CAS  Google Scholar 

  • Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355

    Article  PubMed  CAS  Google Scholar 

  • Sims KD, Robinson MB (1999) Expression patterns and regulation of glutamate transporters in the developing and adult nervous system. Crit Rev Neurobiol 13:169–197

    PubMed  CAS  Google Scholar 

  • Sitcheran R, Gupta P, Fisher PB, Baldwin AS (2005) Positive and negative regulation of EAAT2 by NF-kappaB: a role for N-myc in TNFalpha-controlled repression. EMBO J 24:510–520

    Article  PubMed  CAS  Google Scholar 

  • Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH (2001) Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am J Psychiatry 158:1393–1399

    Article  PubMed  CAS  Google Scholar 

  • Suchak SK, Baloyianni NV, Perkinton MS, Williams RJ, Meldrum BS, Rattray M (2003) The ‘glial’ glutamate transporter, EAAT2 (Glt-1) accounts for high affinity glutamate uptake into adult rodent nerve endings. J Neurochem 84:522–532

    Google Scholar 

  • Sutherland ML, Delaney TA, Noebels JL (1995) Molecular characterization of a high-affinity mouse glutamate transporter. Gene 162:271–274

    Google Scholar 

  • Swamy M, Siegers GM, Minguet S, Wollscheid B, Schamel WW (2006) Blue native polyacrylamide gel electrophoresis (BN-PAGE) for the identification and analysis of multiprotein complexes. Sci STKE 2006:pl4

  • Swanson RA, Liu J, Miller JW, Rothstein JD, Farrell K, Stein BA, Longuemare MC (1997) Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 17:932–940

    PubMed  CAS  Google Scholar 

  • Takatsuru Y, Iino M, Tanaka K, Ozawa S (2007) Contribution of glutamate transporter GLT-1 to removal of synaptically released glutamate at climbing fiber-Purkinje cell synapses. Neurosci Lett 420:85–89

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K (2000) Functions of glutamate transporters in the brain. Neurosci Res 37:15–19

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    Article  PubMed  CAS  Google Scholar 

  • Tordera RM, Totterdell S, Wojcik SM, Brose N, Elizalde N, Lasheras B, Del Rio J (2007) Enhanced anxiety, depressive-like behaviour and impaired recognition memory in mice with reduced expression of the vesicular glutamate transporter 1 (VGLUT1). Eur J Neurosci 25:281–290

    Article  PubMed  CAS  Google Scholar 

  • Utsunomiya-Tate N, Endou H, Kanai Y (1997) Tissue specific variants of glutamate transporter GLT-1. FEBS Lett 416:312–316

    Article  PubMed  CAS  Google Scholar 

  • Williams SM, Sullivan RK, Scott HL, Finkelstein DI, Colditz PB, Lingwood BE, Dodd PR, Pow DV (2005) Glial glutamate transporter expression patterns in brains from multiple mammalian species. Glia 49:520–541

    Google Scholar 

  • Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Xin W, Dougherty PM (2009) Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes. Mol Pain 5:36

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the contribution by the Verein zur Durchführung der wissenschaftlichen Forschung auf dem Gebiet der Neonatologie und Kinderintensivmedizin “Unser Kind”.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Lubec.

Additional information

Seok Heo and Gangsoo Jung contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heo, S., Jung, G., Beuk, T. et al. Hippocampal glutamate transporter 1 (GLT-1) complex levels are paralleling memory training in the Multiple T-Maze in C57BL/6J mice. Brain Struct Funct 217, 363–378 (2012). https://doi.org/10.1007/s00429-011-0362-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0362-5

Keywords

Navigation