Skip to main content
Log in

Projections from the brain to the spinal cord in the mouse

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The cells that project from the brain to the spinal cord have previously been mapped in a wide range of mammalian species, but have not been comprehensively studied in the mouse. We have mapped these cells in the mouse using retrograde tracing after large unilateral Fluoro-Gold (FG) and horseradish peroxidase (HRP) injections in the C1 and C2 spinal cord segments. We have identified over 30 cell groups that project to the spinal cord, and have confirmed that the pattern of major projections from the cortex, diencephalon, midbrain, and hindbrain in the mouse is typically mammalian, and very similar to that found in the rat. However, we report two novel findings: we found labeled neurons in the precuneiform area (an area which has been associated with the midbrain locomotor center in other species), and the epirubrospinal nucleus. We also found labeled cells in the medial division of central nucleus of the amygdala in a small number of cases. Our findings should be of value to researchers engaged in evaluating the impact of spinal cord injury and other spinal cord pathologies on the centers which give rise to descending pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Adli DSH, Stuesse SL, Cruce WLR (1999) Immunohistochemistry and spinal projections of the reticular formation in the northern leopard frog, Rana pipiens. J Comp Neurol 404:387–407

    Article  CAS  PubMed  Google Scholar 

  • Aicher SA, Reis DJ, Nicolae R, Milner TA (1995) Monosynaptic projections from the medullary gigantocellular reticular formation to sympathetic preganglionic neurons in the thoracic spinal cord. J Comp Neurol 363:563–580

    Article  CAS  PubMed  Google Scholar 

  • Akaike T, Fanardji Vv, Ito M, Kumada M, Nakajima H (1973) Electrophysiological analysis of vestibulospinal reflex pathway of rabbit.1. Classification of tract cells. Exp Brain Res 17:477–496

    CAS  PubMed  Google Scholar 

  • Altman J, Carpenter MB (1961) Fiber projections of superior colliculus in cat. J Comp Neurol 116:157–177

    Article  CAS  PubMed  Google Scholar 

  • Arends JJ, Zeigler HP (1991) Organization of the cerebellum in the pigeon (Columba livia): II. Projections of the cerebellar nuclei. J Comp Neurol 306:245–272

    Article  CAS  PubMed  Google Scholar 

  • Bangma GC, ten Donkelaar HJ, Dederen PJ, de Boer-van Huizen R (1984) Cerebellar efferents in the lizard Varanus exanthematicus. II. Projections of the cerebellar nuclei. J Comp Neurol 230:218–230

    Article  CAS  PubMed  Google Scholar 

  • Bankoul S, Neuhuber WL (1992) A direct projection from the medial vestibular nucleus to the cervical spinal dorsal horn of the rat, as demonstrated by anterograde and retrograde tracing. Anat Embryol 185:77–85

    Article  CAS  PubMed  Google Scholar 

  • Bareyre FM, Kerschensteiner M, Misgeld T, Sanes JR (2005) Transgenic labeling of the corticospinal tract for monitoring axonal responses to spinal cord injury. Nat Med 11:1355–1360

    Article  CAS  PubMed  Google Scholar 

  • Barreiro-Iglesias A, Villar-Cervino V, Anadon R, Rodicio MC (2008) Descending brain–spinal cord projections in a primitive vertebrate, the lamprey: cerebrospinal fluid-contacting and dopaminergic neurons. J Comp Neurol 511:711–723

    Article  PubMed  Google Scholar 

  • Basbaum AI, Fields HL (1979) The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: further studies on the anatomy of pain modulation. J Comp Neurol 187:513–531

    Article  CAS  PubMed  Google Scholar 

  • Batton RR, Jayaraman A III, Ruggiero D, Carpenter MB (1977) Fastigial efferent projections in the monkey: an autoradiographic study. J Comp Neurol 174:281–305

    Article  PubMed  Google Scholar 

  • Berk ML, Finkelstein JA (1983) Long descending projections of the hypothalamus in the pigeon, Columba livia. J Comp Neurol 220:127–136

    Article  CAS  PubMed  Google Scholar 

  • Boers J, Kirkwood PA, de Weerd H, Holstege G (2006) Ultrastructural evidence for direct excitatory retroambiguus projections to cutaneous trunci and abdominal external oblique muscle motoneurons in the cat. Brain Res Bull 68:249–256

    Article  CAS  PubMed  Google Scholar 

  • Buhler AV, Proudfit HK, Gebhart GF (2004) Separate populations of neurons in the rostral ventromedial medulla project to the spinal cord and to the dorsolateral pons in the rat. Brain Res 1016:12–19

    Article  CAS  PubMed  Google Scholar 

  • Burton H, Loewy AD (1977) Projections to the spinal cord from medullary somatosensory relay nuclei. J Comp Neurol 173:773–792

    Article  CAS  PubMed  Google Scholar 

  • Burton H, Craig AD, Poulos DA, Molt JT (1979) Efferent projections from temperature sensitive recording loci within the marginal zone of the nucleus caudalis of the spinal trigeminal complex in the cat. J Comp Neurol 183:753–777

    Article  CAS  PubMed  Google Scholar 

  • Carleton SC, Carpenter MB (1984) Distribution of primary vestibular fibers in the brainstem and cerebellum of the monkey. Brain Res 294:281–298

    Article  CAS  PubMed  Google Scholar 

  • Carlton SM, Chung JM, Leonard RB, Willis WD (1985) Funicular trajectories of brainstem neurons projecting to the lumbar spinal cord in the monkey (Macaca fascicularis): a retrograde labeling study. J Comp Neurol 241:382–404

    Article  CAS  PubMed  Google Scholar 

  • Carretta D, Santarelli M, Vanni D, Carrai R, Sbriccoli A, Pinto F, Minciacchi D (2001) The organisation of spinal projecting brainstem neurons in an animal model of muscular dystrophy. A retrograde tracing study on mdx mutant mice. Brain Res 895:213–222

    Article  CAS  PubMed  Google Scholar 

  • Casale EJ, Light AR, Rustioni A (1988) Direct projection of the corticospinal tract to the superficial laminae of the spinal cord in the rat. J Comp Neurol 278:275–286

    Article  CAS  PubMed  Google Scholar 

  • Castiglioni AJ, Gallaway MC, Coulter JD (1978) Spinal projections from midbrain in monkey. J Comp Neurol 178:329–345

    Article  CAS  PubMed  Google Scholar 

  • Chamberlin NL, Saper CB (1998) A brainstem network mediating apneic reflexes in the rat. J Neurosci 18:6048–6056

    CAS  PubMed  Google Scholar 

  • Chiocchetti R, Bombardi C, Grandis A, Mazzuoli G, Gentile A, Pisoni L, Joechler M, Lucchi ML (2006) Cytoarchitecture, morphology, and lumbosacral spinal cord projections of the red nucleus in cattle. Am J Vet Res 67:1662–1669

    Article  PubMed  Google Scholar 

  • Clark FM, Proudfit HK (1991) The projection of noradrenergic neurons in the A7 catecholamine cell group to the spinal cord in the rat demonstrated by anterograde tracing combined with immunocytochemistry. Brain Res 547:279–288

    Article  CAS  PubMed  Google Scholar 

  • Cowie RJ, Holstege G (1992) Dorsal mesencephalic projections to pons, medulla, and spinal cord in the cat: limbic and non-limbic components. J Comp Neurol 319:536–559

    Article  CAS  PubMed  Google Scholar 

  • Cox RG, Peusner KD (1990) Horseradish peroxidase labeling of the central pathways in the medulla of the ampullary nerves in the chicken, Gallus gallus. J Comp Neurol 297:564–581

    Article  CAS  PubMed  Google Scholar 

  • Craig AD (1978) Spinal and medullary input to the lateral cervical nucleus. J Comp Neurol 181:729–743

    Article  PubMed  Google Scholar 

  • Cruce WLR, Stuesse SL, Northcutt RG (1999) Brainstem neurons with descending projections to the spinal cord of two elasmobranch fishes: thornback guitarfish, Platyrhinoidis triseriata, and horn shark, Heterodontus francisci. J Comp Neurol 403:534–560

    Article  CAS  PubMed  Google Scholar 

  • Crutcher KA, Humbertson AO, Martin GF (1978) The origin of brainstem-spinal pathways in the North American opossum (Didelphis virginiana). Studies using the horseradish peroxidase method. J Comp Neurol 179:169–193

    Article  CAS  PubMed  Google Scholar 

  • de Boer-van Huizen RT, ten Donkelaar HJ (1999) Early development of descending supraspinal pathways: a tracing study in fixed and isolated rat embryos. Anat Embryol 199:539–547

    Article  PubMed  Google Scholar 

  • Diagne M, Valla J, Delfini C, Buisseret-Delmas C, Buisseret P (2006) Trigeminovestibular and trigeminospinal pathways in rats: retrograde tracing compared with glutamic acid decarboxylase and glutamate immunohistochemistry. J Comp Neurol 496:759–772

    Article  PubMed  Google Scholar 

  • Dobolyi A, Palkovits M, Bodnar I, Usdin TB (2003) Neurons containing tuberoinfundibular peptide of 39 residues project to limbic, endocrine, auditory and spinal areas in rat. Neuroscience 122:1093–1105

    Article  CAS  PubMed  Google Scholar 

  • Dum RP, Strick PL (1996) Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 16:6513–6525

    CAS  PubMed  Google Scholar 

  • Edwards DL, Poletti CE, Foote WE (1987) Evidence for leucine-enkephalin immunoreactive neurons in the medulla which project to spinal cord in squirrel monkey. Brain Res 437:197–203

    Article  CAS  PubMed  Google Scholar 

  • Ellenberger HH (1999) Nucleus ambiguus and bulbospinal ventral respiratory group neurons in the neonatal rat. Brain Res Bull 50:1–13

    Article  CAS  PubMed  Google Scholar 

  • Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Fritschy JM, Lyons WE, Mullen CA, Kosofsky BE, Molliver ME, Grzanna R (1987) Distribution of locus coeruleus axons in the rat spinal cord: a combined anterograde transport and immunohistochemical study. Brain Res 437:176–180

    Article  CAS  PubMed  Google Scholar 

  • Gahtan E, O’Malley DM (2003) Visually guided injection of identified reticulospinal neurons in zebrafish: a survey of spinal arborization patterns. J Comp Neurol 459:186–200

    Article  PubMed  Google Scholar 

  • Galea MP, Darian-Smith I (1994) Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. Cereb Cortex 4:166–194

    Article  CAS  PubMed  Google Scholar 

  • Gerrits PO, Vodde C, Holstege G (2000) Retroambiguus projections to the cutaneus trunci motoneurons may form a pathway in the central control of mating. J Neurophysiol 83:3076–3083

    CAS  PubMed  Google Scholar 

  • Gilbey MP, Futuro-Neto HA, Zhou SY (1995) Respiratory-related discharge patterns of caudal raphe neurones projecting to the upper thoracic spinal cord in the rat. J Auton Nerv Syst 50:263–273

    Article  CAS  PubMed  Google Scholar 

  • Glover JC, Petursdottir G (1988) Pathway specificity of reticulospinal and vestibulospinal projections in the 11-day chicken embryo. J Comp Neurol 270(25–38):21–60

    Google Scholar 

  • Goode GE, Humbertson AO, Martin GF (1980) Projections from the brain stem reticular formation to laminae I and II of the spinal cord. Studies using light and electron microscopic techniques in the North American opossum. Brain Res 189:327–342

    Article  CAS  PubMed  Google Scholar 

  • Graham J (1977) Autoradiographic study of efferent connections of superior colliculus in cat. J Comp Neurol 173:629–654

    Article  CAS  PubMed  Google Scholar 

  • Gross GH, Oppenheim RW (1985) Novel sources of descending input to the spinal cord of the hatching chick. J Comp Neurol 232:162–179

    Article  CAS  PubMed  Google Scholar 

  • Guyenet PG (1980) The coeruleospinal noradrenergic neurons: anatomical and electrophysiological studies in the rat. Brain Res 189:121–133

    Article  CAS  PubMed  Google Scholar 

  • Hallbeck M (2000) Dynorphin mRNA-expressing neurons in the rat paraventricular hypothalamic nucleus project to the spinal cord. Neurosci Lett 285:161–164

    Article  CAS  PubMed  Google Scholar 

  • Hallbeck M, Blomqvist A (1999) Spinal cord-projecting vasopressinergic neurons in the rat paraventricular hypothalamus. J Comp Neurol 411:201–211

    Article  CAS  PubMed  Google Scholar 

  • Hancock MB, Fougerousse CL (1976) Spinal projections from the nucleus locus coeruleus and nucleus subcoeruleus in the cat and monkey as demonstrated by the retrograde transport of horseradish peroxidase. Brain Res Bull 1:229–234

    Article  CAS  PubMed  Google Scholar 

  • Hardy SG, Horecky JG, Presley KG (1998) Projections of the caudal ventrolateral medulla to the thoracic spinal cord in the rat. Anat Rec 250:95–102

    Article  CAS  PubMed  Google Scholar 

  • Harting JK (1977) Descending pathways from the superior collicullus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta). J Comp Neurol 173:583–612

    Article  CAS  PubMed  Google Scholar 

  • Hassouna E, Yamamoto M, Imagawa T, Uehara M (2001) Distribution of reticulospinal neurons in the chicken by retrograde transport of WGA-HRP. Tissue Cell 33:141–147

    Article  CAS  PubMed  Google Scholar 

  • Hayes NL, Rustioni A (1981) Descending projections from brainstem and sensorimotor cortex to spinal enlargements in the cat. Single and double retrograde tracer studies. Exp Brain Res 41:89–107

    Article  CAS  PubMed  Google Scholar 

  • Hobbelen JF, Gramsbergen A, van Hof MW (1992) Descending pathways and the hopping response in the rabbit. Behav Brain Res 51:217–221

    Article  CAS  PubMed  Google Scholar 

  • Holstege G (1987a) Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat. J Comp Neurol 260:98–126

    Article  CAS  PubMed  Google Scholar 

  • Holstege G (1987b) Anatomical evidence for an ipsilateral rubrospinal pathway and for direct rubrospinal projections to motoneurons in the cat. Neurosci Lett 74:269–274

    Article  CAS  PubMed  Google Scholar 

  • Holstege JC (1991) Ultrastructural evidence for GABAergic brain stem projections to spinal motoneurons in the rat. J Neurosci 11:159–167

    CAS  PubMed  Google Scholar 

  • Holstege G, Tan J (1987) Supraspinal control of motoneurons innervating the striated muscles of the pelvic floor including urethral and anal sphincters in the cat. Brain 110:1323–1344

    Article  PubMed  Google Scholar 

  • Holstege G, Tan J (1988) Projections from the red nucleus and surrounding areas to the brainstem and spinal cord in the cat. An HRP and autoradiographical tracing study. Behav Brain Res 28:33–57

    Article  CAS  PubMed  Google Scholar 

  • Huerta MF, Harting JK (1982) Projections of the superior colliculus to the supraspinal nucleus and the cervical spinal cord gray of the cat. Brain Res 242:326–331

    Article  CAS  PubMed  Google Scholar 

  • Huisman AM, Kuypers HGJM, Verburgh CA (1982) Differences in collateralization of the descending spinal pathways from red nucleus and other brain-stem cell groups in cat and monkey. Prog Brain Res 57:185–217

    Article  CAS  PubMed  Google Scholar 

  • Jean A (1972) Localization and activity of medullary swallowing neurones. J Physiol 64:227–268

    CAS  Google Scholar 

  • Kausz M (1991) Arrangement of neurons in the medullary reticular formation and raphe nuclei projecting to thoracic, lumbar and sacral segments of the spinal cord in the cat. Anat Embryol 183:151–163

    Article  CAS  PubMed  Google Scholar 

  • Kc P, Haxhiu MA, Tolentino-Silva FP, Wu M, Trouth CO, Mack SO (2002) Paraventricular vasopressin-containing neurons project to brain stem and spinal cord respiratory-related sites. Respir Physiol Neurobiol 133:75–88

    Article  PubMed  Google Scholar 

  • Kimmel CB, Powell SL, Metcalfe WK (1982) Brain neurons which project to the spinal cord in young larvae of the zebrafish. J Comp Neurol 205:112–127

    Article  CAS  PubMed  Google Scholar 

  • Kitao Y, Okoyama S, Moriizumi T, Kudo M (1993) Neurogenetical segregation of the vestibulospinal neurons in the rat. Brain Res 620:149–154

    Article  CAS  PubMed  Google Scholar 

  • Kneisley LW, Biber MP, Lavail JH (1978) Study of origin of brain-stem projections to monkey spinal-cord using retrograde transport method. Exp Neurol 60:116–139

    Article  CAS  PubMed  Google Scholar 

  • Kuchler M, Fouad K, Weinmann O, Schwab ME, Raineteau O (2002) Red nucleus projections to distinct motor neuron pools in the rat spinal cord. J Comp Neurol 448:349–359

    Article  PubMed  Google Scholar 

  • Kudo N, Furukawa F, Okado N (1993) Development of descending fibers to the rat embryonic spinal-cord. Neurosci Res 16:131–141

    Article  CAS  PubMed  Google Scholar 

  • Kunzle H (1992) Meso-diencephalic regions projecting to spinal cord and dorsal column nuclear complex in the hedgehog-tenrec, Echinops telfairi. Anat Embryol 185:57–68

    Article  CAS  PubMed  Google Scholar 

  • Kuypers HG, Maisky VA (1975) Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat. Neurosci Lett 1:9–14

    Article  CAS  PubMed  Google Scholar 

  • Kuypers HG, Fleming WR, Farinholt JW (1962) Subcorticospinal projections in the rhesus monkey. J Comp Neurol 118:107–137

    Article  CAS  PubMed  Google Scholar 

  • Lakke EA (1997) The projections to the spinal cord of the rat during development: a timetable of descent. Adv Anat Embryol Cell Biol 135:1–143 (I–XIV)

    Google Scholar 

  • Lan CT, Wu WC, Ling EA, Chai CY (1997) Evidence of a direct projection from the cardiovascular-reactive dorsal medulla to the intermediolateral cell column of the spinal cord in cats as revealed by light and electron microscopy. Neuroscience 77:521–533

    Article  CAS  PubMed  Google Scholar 

  • Leichnetz GR, Watkins L, Griffin G, Murfin R, Mayer DJ (1978) Projection from nucleus raphe magnus and other brain-stem nuclei to spinal-cord in rat—study using HRP blue-reaction. Neurosci Lett 8:119–124

    Article  Google Scholar 

  • Leite-Almeida H, Valle-Fernandes A, Almeida A (2006) Brain projections from the medullary dorsal reticular nucleus: an anterograde and retrograde tracing study in the rat. Neuroscience 140:577–595

    Article  CAS  PubMed  Google Scholar 

  • Leong SK, Shieh JY, Wong WC (1984) Localizing spinal-cord-projecting neurons in adult albino rats. J Comp Neurol 228:1–17

    Article  CAS  PubMed  Google Scholar 

  • Li XG, Florence SL, Kaas JH (1990) Areal distributions of cortical neurons projecting to different levels of the caudal brain stem and spinal cord in rats. Somatosens Mot Res 7:315–335

    Article  CAS  PubMed  Google Scholar 

  • Loewy AD, Burton H (1978) Nuclei of the solitary tract: efferent projections to the lower brain stem and spinal cord of the cat. J Comp Neurol 181:421–449

    Article  CAS  PubMed  Google Scholar 

  • Mantyh PW (1983) Connections of midbrain periaqueductal gray in the monkey. II. Descending efferent projections. J Neurophysiol 49:582–594

    CAS  PubMed  Google Scholar 

  • Marini G, Pianca L, Tredici G (1999) Descending projections arising from the parafascicular nucleus in rats: trajectory of fibers, projection pattern and mapping of terminations. Somatosens Mot Res 16:207–222

    Article  CAS  PubMed  Google Scholar 

  • Martin GF (1969) Efferent tectal pathways of opossum—(Didelphis Virginiana). J Comp Neurol 135:209–224

    Article  CAS  PubMed  Google Scholar 

  • Martin GF, Dom R (1970) The rubro-spinal tract of the opposum (Didelphis virginiana). J Comp Neurol 138:19–30

    Article  CAS  PubMed  Google Scholar 

  • Martin GF, Cabana T, DiTirro FJ, Ho RH, Humbertson AO (1982) Reticular and raphe projections to the spinal cord of the North American opossum. Evidence for connectional heterogeneity. Prog Brain Res 57:109–129

    Article  CAS  PubMed  Google Scholar 

  • Masino T, Knudsen EI (1992) Anatomical pathways from the optic tectum to the spinal cord subserving orienting movements in the barn owl. Exp Brain Res 92:194–208

    Article  CAS  PubMed  Google Scholar 

  • Masson RL, Sparkes ML, Ritz LA (1991) Descending projections to the rat sacrocaudal spinal cord. J Comp Neurol 307:120–130

    Article  PubMed  Google Scholar 

  • Matsushita M, Okado N, Ikeda M, Hosoya Y (1981) Descending projections from the spinal and mesencephalic nuclei of the trigeminal nerve to the spinal-cord in the cat—a study with the horseradish-peroxidase technique. J Comp Neurol 196:173–187

    Article  CAS  PubMed  Google Scholar 

  • Mesulam MM (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26:106–117

    CAS  PubMed  Google Scholar 

  • Metcalfe WK, Mendelson B, Kimmel CB (1986) Segmental homologies among reticulospinal neurons in the hindbrain of the zebrafish larva. J Comp Neurol 251:147–159

    Article  CAS  PubMed  Google Scholar 

  • Michaloudi H, Dinopoulos A, Karamanlidis AN, Papadopoulos NC, Antonopoulos J (1988) Cortical and brain-stem projections to the spinal-cord of the hedgehog (Erinaceus europaeus)—a horseradish-peroxidase study. Anat Embryol 178:259–270

    Article  CAS  PubMed  Google Scholar 

  • Miller MW (1987) The origin of corticospinal projection neurons in rat. Exp Brain Res 67:339–351

    Article  CAS  PubMed  Google Scholar 

  • Miller RA, Strominger NL (1973) Efferent connections of the red nucleus in the brainstem and spinal cord of the rhesus monkey. J Comp Neurol 152:327–345

    Article  CAS  PubMed  Google Scholar 

  • Mizuno N, Takahashi O, Satoda T, Matsushima R (1985) Amygdalospinal projections in the macaque monkey. Neurosci Lett 53:327–330

    Article  CAS  PubMed  Google Scholar 

  • Mokha SS, Iggo A (1987) Mechanisms mediating the brain stem control of somatosensory transmission in the dorsal horn of the cat’s spinal cord: an intracellular analysis. Exp Brain Res 69:93–106

    Article  CAS  PubMed  Google Scholar 

  • Mtui EP, Anwar M, Gomez R, Reis DJ, Ruggiero DA (1993) Projections from the nucleus tractus solitarii to the spinal cord. J Comp Neurol 337:231–252

    Article  CAS  PubMed  Google Scholar 

  • Mtui EP, Anwar M, Reis DJ, Ruggiero DA (1995) Medullary visceral reflex circuits: local afferents to nucleus tractus solitarii synthesize catecholamines and project to thoracic spinal cord. J Comp Neurol 351:5–26

    Article  CAS  PubMed  Google Scholar 

  • New JG, Snyder BD, Woodson KL (1998) Descending neural projections to the spinal cord in the channel catfish, Ictalurus punctatus. Anat Rec 252:235–253

    Article  CAS  PubMed  Google Scholar 

  • Newman DB, Cruce WL, Bruce LL (1983) The sources of supraspinal afferents to the spinal cord in a variety of limbed reptiles. I. Reticulospinal systems. J Comp Neurol 215:17–32

    Article  CAS  PubMed  Google Scholar 

  • Nordlander RH, Baden ST, Ryba TMJ (1985) Development of early brain-stem projections to the tail spinal-cord of Xenopus. J Comp Neurol 231:519–529

    Article  CAS  PubMed  Google Scholar 

  • Nudo RJ, Masterton RB (1988) Descending pathways to the spinal-cord—a comparative study of 22 mammals. J Comp Neurol 277:53–79

    Article  CAS  PubMed  Google Scholar 

  • Nudo RJ, Masterton RB (1989) Descending pathways to the spinal cord: II. Quantitative study of the tectospinal tract in 23 mammals. J Comp Neurol 286:96–119

    Article  CAS  PubMed  Google Scholar 

  • Nudo RJ, Masterton RB (1990) Descending pathways to the spinal cord, III: sites of origin of the corticospinal tract. J Comp Neurol 296:559–583

    Article  CAS  PubMed  Google Scholar 

  • Nyberg-Hansen R (1964a) The location and termination of tectospinal fibers in the cat. Exp Neurol 9:212–227

    Article  CAS  PubMed  Google Scholar 

  • Nyberg-Hansen R (1964b) Origin and termination of fibers from the vestibular nuclei descending in the medial longitudinal fasciculus. An experimental study with silver impregnation methods in the cat. J Comp Neurol 122:355–367

    Article  CAS  PubMed  Google Scholar 

  • Nyberg-Hansen R (1965) Sites and mode of termination of reticulo-spinal fibers in the cat. An experimental study with silver impregnation methods. J Comp Neurol 124:71–99

    Article  CAS  PubMed  Google Scholar 

  • Nyberg-Hansen R, Brodal A (1964) Sites and mode of termination of rubrospinal fibres in the cat. An experimental study with silver impregnation methods. J Anat 98:235–253

    CAS  PubMed  Google Scholar 

  • Ogawa H, Imoto T, Hayama T (1984) Responsiveness of solitario-parabrachial relay neurons to taste and mechanical stimulation applied to the oral cavity in rats. Exp Brain Res 54:349–358

    CAS  PubMed  Google Scholar 

  • Oka Y, Satou M, Ueda K (1986) Descending pathways to the spinal-cord in the hime salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Neurol 254:91–103

    Article  CAS  PubMed  Google Scholar 

  • Okado N, Oppenheim RW (1985) The onset and development of descending pathways to the spinal-cord in the chick-embryo. J Comp Neurol 232:143–161

    Article  CAS  PubMed  Google Scholar 

  • Olivier E, Chat M, Grantyn A (1991) Rostrocaudal and lateromedial density distributions of superior colliculus neurons projecting in the predorsal bundle and to the spinal cord: a retrograde HRP study in the cat. Exp Brain Res 87:268–282

    Article  CAS  PubMed  Google Scholar 

  • Pantaleo T, Corda M (1986) Respiration-related neurons in the medial nuclear complex of the solitary tract of the cat. Respir Physiol 64:135–148

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Butcher LL (1985) Organizational principles of the brain as revealed by choline acetyltransferase and acetylcholinesterase distribution and projections. In: Paxinos G (ed) The rat nervous system, 1st edn. Elsevier Academic Press, San Diego, pp 487–521

    Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Elsevier Academic Press, San Diego

    Google Scholar 

  • Peterson BW, Coulter JD (1977) A new long spinal projection from the vestibular nuclei in the cat. Brain Res 122:351–356

    Article  CAS  PubMed  Google Scholar 

  • Peterson BW, Maunz RA, Pitts NG, Mackel RG (1975) Patterns of projection and braching of reticulospinal neurons. Exp Brain Res 23:333–351

    Article  CAS  PubMed  Google Scholar 

  • Peterson BW, Maunz RA, Fukushima K (1978) Properties of a new vestibulospinal projection, the caudal vestibulospinal tract. Exp Brain Res 32:287–292

    CAS  PubMed  Google Scholar 

  • Phelan KD, Falls WM (1991) A comparison of the distribution and morphology of thalamic, cerebellar and spinal projection neurons in rat trigeminal nucleus interpolaris. Neuroscience 40:497–511

    Article  CAS  PubMed  Google Scholar 

  • Poirier LJ, Bouvier G (1966) Red nucleus and its efferent nervous pathways in monkey. J Comp Neurol 128:223–243

    Article  CAS  PubMed  Google Scholar 

  • Pompeiano O, Brodal A (1957) Experimental demonstration of a somatotopical origin of rubrospinal fibers in the cat. J Comp Neurol 108:225–251

    Article  CAS  PubMed  Google Scholar 

  • Prasada Rao PD, Jadhao AG, Sharma SC (1987) Descending projection neurons to the spinal cord of the goldfish, Carassius auratus. J Comp Neurol 265:96–108

    Article  CAS  PubMed  Google Scholar 

  • Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martínez S (2007) The chick brain in stereotaxic coordinates. Elsevier Academic Press, New York, p 41

    Google Scholar 

  • Radulovacki M, Pavlovic S, Saponjic J, Carley DW (2003) Intertrigeminal region attenuates reflex apnea and stabilizes respiratory pattern in rats. Brain Res 975:66–72

    Article  CAS  PubMed  Google Scholar 

  • Rao PD, Jadhao AG, Sharma SC (1993) Topographic organization of descending projection neurons to the spinal cord of the goldfish, Carassius auratus. Brain Res 620:211–220

    Article  CAS  PubMed  Google Scholar 

  • Rathelot JA, Strick PL (2006) Muscle representation in the macaque motor cortex: an anatomical perspective. Proc Natl Acad Sci 103:8257–8262

    Article  CAS  PubMed  Google Scholar 

  • Reed WR, Shum-Siu A, Magnuson DS (2008) Reticulospinal pathways in the ventrolateral funiculus with terminations in the cervical and lumbar enlargements of the adult rat spinal cord. Neuroscience 151:505–517

    Article  CAS  PubMed  Google Scholar 

  • Rikard-Bell GC, Bystrzycka EK, Nail BS (1984) Brainstem projections to the phrenic nucleus: a HRP study in the cat. Brain Res Bull 12:469–477

    Article  CAS  PubMed  Google Scholar 

  • Ruggiero DA, Ross CA, Reis DJ (1981) Projections from the spinal trigeminal nucleus to the entire length of the spinal cord in the rat. Brain Res 225:225–233

    Article  CAS  PubMed  Google Scholar 

  • Russo A, Monaco S, Romeo R, Pellitteri R, Stanzani S (2004) Serotonergic collateralized projections from Barrington’s nucleus to the medial preoptic area and lumbo-sacral spinal cord. Brain Res 1019:64–67

    Article  CAS  PubMed  Google Scholar 

  • Russo A, Pellitteri R, Romeo R, Stanzani S, Jean A (2005) Branching projections of ventrolateral reticular neurons to the medial preoptic area and lumbo-sacral spinal cord. Behav Brain Funct 1:17

    Article  PubMed  Google Scholar 

  • Sanchez-Camacho C, Marin O, ten Donkelaar HJ, Gonzalez A (2001a) Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin. J Comp Neurol 434:186–208

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Camacho C, Marin O, Smeets WJ, ten Donkelaar HJ, Gonzalez A (2001b) Descending supraspinal pathways in amphibians. II. Distribution and origin of the catecholaminergic innervation of the spinal cord. J Comp Neurol 434:209–232

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Camacho C, Martin O, ten Donkelaar HJ, Gonzalez A (2002) Descending supraspinal pathways in amphibians: III. Development of descending projections to the spinal cord in Xenopus laevis with emphasis on the catecholaminergic inputs. J Comp Neurol 446:11–24

    Article  PubMed  Google Scholar 

  • Sandrew BB, Edwards DL, Poletti CE, Foote WE (1986) Amygdalospinal projections in the cat. Brain Res 373:235–239

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Endo K, Ikegami H, Imagawa M, Sasaki M, Uchino Y (1996) Properties of utricular nerve-activated vestibulospinal neurons in cats. Exp Brain Res 112:197–202

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Imagawa M, Isu N, Uchino Y (1997) Properties of saccular nerve-activated vestibulospinal neurons in cats. Exp Brain Res 116:381–388

    Article  CAS  PubMed  Google Scholar 

  • Satoda T, Matsumoto H, Zhou L, Rose PK, Richmond FJ (2002) Mesencephalic projections to the first cervical segment in the cat. Exp Brain Res 144:397–413

    Article  CAS  PubMed  Google Scholar 

  • Sawchenko PE, Swanson LW (1982) Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol 205:260–272

    Article  CAS  PubMed  Google Scholar 

  • Sbriccoli A, Santarelli M, Carretta D, Pinto F, Granato F, Minciacchi D (1995) Architectural changes of the cortico-spinal system in the dystrophin defective mdx mouse. Neurosci Lett 200:53–56

    Article  CAS  PubMed  Google Scholar 

  • Schwanzel-Fukuda M, Morrell JI, Pfaff DW (1984) Localization of forebrain neurons which project directly to the medulla and spinal cord of the rat by retrograde tracing with wheat germ agglutinin. J Comp Neurol 226:1–20

    Article  CAS  PubMed  Google Scholar 

  • Shen P, Arnold AP, Micevych PE (1990) Supraspinal projections to the ventromedial lumbar spinal cord in adult male rats. J Comp Neurol 300:263–272

    Article  CAS  PubMed  Google Scholar 

  • Shieh JY, Leong SK, Wong WC (1983) Origin of the rubrospinal tract in neonatal, developing, and mature rats. J Comp Neurol 214:79–86

    Article  CAS  PubMed  Google Scholar 

  • Sirkin DW, Feng AS (1987) Autoradiographic study of descending pathways from the pontine reticular formation and the mesencephalic trigeminal nucleus in the rat. J Comp Neurol 256:483–493

    Article  CAS  PubMed  Google Scholar 

  • Smeets WJ, Timerick SJ (1981) Cells of origin of pathways descending to the spinal cord in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. J Comp Neurol 202:473–491

    Article  CAS  PubMed  Google Scholar 

  • Smith JC, Morrison DE, Ellenberger HH, Otto MR, Feldman JL (1989) Brainstem projections to the major respiratory neuron populations in the medulla of the cat. J Comp Neurol 281:69–96

    Article  CAS  PubMed  Google Scholar 

  • Song G, Yu Y, Poon CS (2006) Cytoarchitecture of pneumotaxic integration of respiratory and nonrespiratory information in the rat. J Neurosci 26:300–310

    Article  CAS  PubMed  Google Scholar 

  • Stockx EM, Anderson CR, Murphy SM, Cooke IR, Berger PJ (2007) The development of descending projections from the brainstem to the spinal cord in the fetal sheep. BMC Neurosci 8:40

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (1998) Brain maps: structure of the rat brain, 2nd edn. Elsevier Academic Press, New York

    Google Scholar 

  • Takada M (1993) Widespread dopaminergic projections of the subparafascicular thalamic nucleus in the rat. Brain Res Bull 32:301–309

    Article  CAS  PubMed  Google Scholar 

  • ten Donkelaar HJ (1976) Descending pathways from the brain stem to the spinal cord in some reptiles. I. Origin. J Comp Neurol 167:421–442

    Article  PubMed  Google Scholar 

  • ten Donkelaar HJ, de Boer-van Huizen R (1982) Observations on the development of descending pathways from the brain stem to the spinal cord in the clawed toad Xenopus laevis. Anat Embryol 163:461–473

    Article  PubMed  Google Scholar 

  • ten Donkelaar HJ, de Boer-van Huizen R, Schouten FT, Eggen SJ (1981) Cells of origin of descending pathways to the spinal cord in the clawed toad (Xenopus laevis). Neuroscience 6:2297–2312

    Article  PubMed  Google Scholar 

  • Torvik A, Brodal A (1957) The origin of reticulospinal fibers in the cat—an experimental study. Anat Rec 128:113–137

    Article  CAS  PubMed  Google Scholar 

  • Tracey D (2004) Ascending and descending tracts in the spinal cord. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier Academic Press, San Diego, pp 149–164

    Google Scholar 

  • Tsukamoto Y, Yamamoto T, Okado H, Nibu K, Terashima T (2003) Retrograde labeling of mouse spinal descending tracts by a recombinant adenovirus. Arch Histol Cytol 66:209–220

    Article  PubMed  Google Scholar 

  • van Mier P, ten Donkelaar HJ (1984) Early development of descending pathways from the brain stem to the spinal cord in Xenopus laevis. Anat Embryol 170:295–306

    Article  PubMed  Google Scholar 

  • Vanderhorst VG (2005) Nucleus retroambiguus-spinal pathway in the mouse: localization, gender differences, and effects of estrogen treatment. J Comp Neurol 488:180–200

    Article  PubMed  Google Scholar 

  • VanderHorst VG, Ulfhake B (2006) The organization of the brainstem and spinal cord of the mouse: relationships between monoaminergic, cholinergic, and spinal projection systems. J Chem Neuroanat 31:2–36

    Article  CAS  PubMed  Google Scholar 

  • Wada N, Sugita S, Jouzaki A, Tokuriki M (1993) Descending projections to coccygeal spinal segments in the cat. J Anat 182:259–265

    PubMed  Google Scholar 

  • Warner G, Watson CR (1972) The rubrospinal tract in a diprotodont marsupial (Trichosurus vulpecula). Brain Res 41:180–183

    Article  CAS  PubMed  Google Scholar 

  • Warren S, Waitzman DM, May PJ (2008) Anatomical evidence for interconnections between the central mesencephalic reticular formation and cervical spinal cord in the cat and macaque. Anat Rec 291:141–160

    Article  Google Scholar 

  • Watson C, Harvey AR (2009) Projections from the brain to the spinal cord. In: Watson C, Paxinos G, Kayalioglu G (eds) The spinal cord. Elsevier Academic Press, San Diego, pp 168–171

    Chapter  Google Scholar 

  • Webster DM, Steeves JD (1988) Origins of brainstem-spinal projections in the duck and goose. J Comp Neurol 273:573–583

    Article  CAS  PubMed  Google Scholar 

  • Webster DM, Steeves JD (1991) Funicular organization of avian brainstem-spinal projections. J Comp Neurol 312:467–476

    Article  CAS  PubMed  Google Scholar 

  • Wild JM, Cabot JB, Cohen DH, Karten HJ (1979) Origin, course and terminations of the rubrospinal tract in the pigeon (Columba livia). J Comp Neurol 187:639–654

    Article  CAS  PubMed  Google Scholar 

  • Xu XM, Martin GF (1989) Developmental plasticity of the rubrospinal tract in the North American opossum. J Comp Neurol 279:368–381

    Article  CAS  PubMed  Google Scholar 

  • Zemlan FP, Pfaff DW (1979) Topographical organization in medullary reticulospinal systems as demonstrated by the horseradish peroxidase technique. Brain Res 174:161–166

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Gulgun Kayalioglu, Dr Yuhong Fu, Dr Yue Qi, and Dr Erika Gyengesi for their helpful suggestions, and we thank Mr Peter Zhao for technical support. This work was supported by the Christopher and Dana Reeve Foundation and an Australia Fellowship awarded to Professor George Paxinos by the National Health and Medical Research Council (NHMRC) (466028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Watson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, H., Paxinos, G. & Watson, C. Projections from the brain to the spinal cord in the mouse. Brain Struct Funct 215, 159–186 (2011). https://doi.org/10.1007/s00429-010-0281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-010-0281-x

Keywords

Navigation