Skip to main content
Log in

Realistic modelling of receptor activation in hippocampal excitatory synapses: analysis of multivesicular release, release location, temperature and synaptic cross-talk

  • Original article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Chemically mediated synaptic transmission results from fusion of synaptic vesicles with the presynaptic plasma membrane, subsequent release of the vesicular content into the cleft and binding to postsynaptic receptors. Previous modelling studies of excitatory neurotransmitter glutamate were based on simplified geometries failing to account for the biologically realistic synaptic environment, in particular, the presence of astrocytes, the geometry of extracellular space, and the neurotransmitter uptake mechanism. Using 3-dimensional reconstructions of hippocampal glutamatergic synapses including the surrounding astrocytic processes we have developed a biologically realistic model to analyse receptor activation in different conditions. We used the finite element method to simulate glutamate release, analyse glutamate diffusion following single and multiple vesicle release and binding at the postsynaptic site to AMPA and NMDA receptors. We demonstrate that: (1) the transmitter diffusion is highly temperature-sensitive; (2) release conditions and geometry more specifically affect AMPARs than NMDARs; (3) the sensitivities of AMPARs and NMDARs to simultaneous vesicular release are different; (4) in the case of multivesicle neurotransmitter release with variable delays, the binding of glutamate to AMPARs is additive up to 1 ms after the release, then becomes independent, but to NMDARs the binding is additive up to 33 ms; (5) the number of AMPARs varies more than the number of NMDRs in response to the input firing patterns; (6) the presence of astrocytes effectively blocks synaptic cross-talk; and (7) synaptic cross-talk, mediated by NMDARs but not AMPARs, is only possible after quasi-simultaneous multivesicular release at physiological temperature (35°C) without intervening astrocytes, but not at 25°C. Our simulations demonstrate the importance of temperature and ultrastructural synaptic environment in synaptic transmission and synaptic cross-talk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agmon N, Edelstein AL (1997) Collective binding properties of receptor arrays. Biophys J 72:1582–1594

    Article  PubMed  CAS  Google Scholar 

  • Andrasfalvy BK, Magee JC (2001) Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. J Neurosci 21:9151–9159

    PubMed  CAS  Google Scholar 

  • Asztely F, Erdemli G, Kullmann DM (1997) Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron 18:281–293

    Article  PubMed  CAS  Google Scholar 

  • Bartol TM Jr, Land BR, Salpeter EE, Salpeter MM (1991) Monte Carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophys J 59:1290–1307

    Article  PubMed  CAS  Google Scholar 

  • Bekkers JM, Richerson GB, Stevens CF (1990) Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices. Proc Natl Acad Sci USA 87:5359–5362

    Article  PubMed  CAS  Google Scholar 

  • Bergles DE, Jahr CE (1998) Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J Neurosci 18:7709–7716

    PubMed  CAS  Google Scholar 

  • Bruns D, Riedel D, Klingauf J, Jahn R (2000) Quantal release of serotonin. Neuron 28:205–220

    Article  PubMed  CAS  Google Scholar 

  • Chen KC, Nicholson C (2000) Changes in brain cell shape create residual extracellular space volume and explain tortuosity behavior during osmotic challenge. Proc Natl Acad Sci USA 97:8306–8311

    Article  PubMed  CAS  Google Scholar 

  • Clements JD (1996) Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19:163–171

    Article  PubMed  CAS  Google Scholar 

  • Clements JD, Lester RA, Tong G, Jahr CE, Westbrook GL (1992) The time course of glutamate in the synaptic cleft. Science 258:1498–1501

    Article  PubMed  CAS  Google Scholar 

  • De Robertis E (1967) Ultrastructure and cytochemistry of the synaptic region. The macromolecular components involved in nerve transmission are being studied. Science 156:907–914

    Article  PubMed  Google Scholar 

  • Diamond JS, Jahr CE (1997) Transporters buffer synaptically released glutamate on a submillisecond time scale. J Neurosci 17:4672–4687

    PubMed  CAS  Google Scholar 

  • Dobrunz LE, Stevens CF (1997) Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18:995–1008

    Article  PubMed  CAS  Google Scholar 

  • Faber DS, Young WS, Legendre P, Korn H (1992) Intrinsic quantal variability due to stochastic properties of receptor–transmitter interactions. Science 258:1494–1498

    Article  PubMed  CAS  Google Scholar 

  • Forti L, Bossi M, Bergamaschi A, Villa A, Malgaroli A (1997) Loose-patch recordings of single quanta at individual hippocampal synapses. Nature 388:874–878

    Article  PubMed  CAS  Google Scholar 

  • Franks KM, Bartol TM Jr, Sejnowski TJ (2002) A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophys J 83:2333–2348

    Article  PubMed  CAS  Google Scholar 

  • Franks KM, Stevens CF, Sejnowski TJ (2003) Independent sources of quantal variability at single glutamatergic synapses. J Neurosci 23:3186–3195

    PubMed  CAS  Google Scholar 

  • Frerking M, Borges S, Wilson M (1995) Variation in GABA mini amplitude is the consequence of variation in transmitter concentration. Neuron 15:885–895

    Article  PubMed  CAS  Google Scholar 

  • Geiger JRP, Roth A, Tasskin B, Jonas P (1999) Glutamate-mediated synaptic excitation of cortical interneurons. In: The handbook of experimental pharmacology. Springer, Berlin

  • Glavinovic MI, Rabie HR (1998) Monte Carlo simulation of spontaneous miniature excitatory postsynaptic currents in rat hippocampal synapse in the presence and absence of desensitization. Pflugers Arch 435:193–202

    Article  PubMed  CAS  Google Scholar 

  • Hanse E, Gustafsson B (2001a) Quantal variability at glutamatergic synapses in area CA1 of the rat neonatal hippocampus. J Physiol 531:467–480

    Article  PubMed  CAS  Google Scholar 

  • Hanse E, Gustafsson B (2001b) Vesicle release probability and pre-primed pool at glutamatergic synapses in area CA1 of the rat neonatal hippocampus. J Physiol 531:481–493

    Article  PubMed  CAS  Google Scholar 

  • Harris KM, Landis DM (1986) Membrane structure at synaptic junctions in area CA1 of the rat hippocampus. Neuroscience 19:857–872

    Article  PubMed  CAS  Google Scholar 

  • Hestrin S, Nicoll RA, Perkel DJ, Sah P (1990a) Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices. J Physiol 422:203–225

    PubMed  CAS  Google Scholar 

  • Hestrin S, Sah P, Nicoll RA (1990b) Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices. Neuron 5:247–253

    Article  PubMed  CAS  Google Scholar 

  • Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol 81:275–300

    Article  PubMed  CAS  Google Scholar 

  • Holmes WR (1995) Modeling the effect of glutamate diffusion and uptake on NMDA and non-NMDA receptor saturation. Biophys J 69:1734–1747

    Article  PubMed  CAS  Google Scholar 

  • Isaac JT, Oliet SH, Hjelmstad GO, Nicoll RA, Malenka RC (1996) Expression mechanisms of long-term potentiation in the hippocampus. J Physiol Paris 90:299–303

    Article  PubMed  CAS  Google Scholar 

  • Jonas P, Major G, Sakmann B (1993) Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J Physiol 472:615–663

    PubMed  CAS  Google Scholar 

  • Katz B (1969) The release of neural transmitter substances. Liverpool University Press, Liverpool, UK

  • Kharazia VN, Weinberg RJ (1999) Immunogold localization of AMPA and NMDA receptors in somatic sensory cortex of albino rat. J Comp Neurol 412:292–302

    Article  PubMed  CAS  Google Scholar 

  • Kidd FL, Isaac JT (2001) Kinetics and activation of postsynaptic kainate receptors at thalamocortical synapses: role of glutamate clearance. J Neurophysiol 86:1139–1148

    PubMed  CAS  Google Scholar 

  • Kirov SA, Sorra KE, Harris KM (1999) Slices have more synapses than perfusion-fixed hippocampus from both young and mature rats. J Neurosci 19:2876–2886

    PubMed  CAS  Google Scholar 

  • Kleinle J, Vogt K, Luscher HR, Muller L, Senn W, Wyler K, Streit J (1996) Transmitter concentration profiles in the synaptic cleft: an analytical model of release and diffusion. Biophys J 71:2413–2426

    Article  PubMed  CAS  Google Scholar 

  • Korn H, Bausela F, Charpier S, Faber DS (1993) Synaptic noise and multiquantal release at dendritic synapses. J Neurophysiol 70:1249–1254

    PubMed  CAS  Google Scholar 

  • Kruk PJ, Korn H, Faber DS (1997) The effects of geometrical parameters on synaptic transmission: a Monte Carlo simulation study. Biophys J 73:2874–2890

    Article  PubMed  CAS  Google Scholar 

  • Kullmann DM, Asztely F (1998) Extrasynaptic glutamate spillover in the hippocampus: evidence and implications. Trends Neurosci 21:8–14

    Article  PubMed  CAS  Google Scholar 

  • Kullmann DM, Siegelbaum SA (1995) The site of expression of NMDA receptor-dependent LTP: new fuel for an old fire. Neuron 15:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Kullmann DM, Erdemil G, Asztely F (1996) LTP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron 17:461–474

    Article  PubMed  CAS  Google Scholar 

  • Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18:8751–8757

    PubMed  CAS  Google Scholar 

  • Lester RA, Jahr CE (1992) NMDA channel behavior depends on agonist affinity. J Neurosci 12:635–643

    PubMed  CAS  Google Scholar 

  • Liu G, Tsien RW (1995) Synaptic transmission at single visualized hippocampal boutons. Neuropharmacology 34:1407–1421

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Choi S, Tsien RW (1999) Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron 22:395–409

    Article  PubMed  CAS  Google Scholar 

  • Longsworth LG (1953) Diffusion measurements, at 25, of aqueous solutions of amino acids, peptides and sugars. J Am Chem Soc 75:5705–5709

    Google Scholar 

  • Magleby KL, Stevens CF (1972) A quantitative description of end-plate currents. J Physiol 223:173–197

    PubMed  CAS  Google Scholar 

  • Mainen ZF, Malinow R, Svoboda K (1999) Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 399:151–155

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092

    Article  PubMed  CAS  Google Scholar 

  • McAllister AK, Stevens CF (2000) Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proc Natl Acad Sci USA 97:6173–6178

    Article  PubMed  CAS  Google Scholar 

  • Monck JR, Fernandez JM (1992) The exocytotic fusion pore. J Cell Biol 119:1395–1404

    Article  PubMed  CAS  Google Scholar 

  • Murthy VN, Schikorski T, Stevens CF, Zhu Y (2001) Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32:673–682

    Article  PubMed  CAS  Google Scholar 

  • Nieto-Sampedro M, Hoff SF, Cotman CW (1982) Perforated postsynaptic densities: probable intermediates in synapse turnover. Proc Natl Acad Sci USA 79:5718–5722

    Article  PubMed  CAS  Google Scholar 

  • Nusser Z, Lujan R, Laube G, Roberts JD, Molnar E, Somogyi P (1998) Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21:545–559

    Article  PubMed  CAS  Google Scholar 

  • Palay SL, Palade GE (1955) The fine structure of neurons. J Biophys Biochem Cytol 1:69–88

    Article  PubMed  CAS  Google Scholar 

  • Patneau DK, Mayer ML (1990) Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-d-aspartate and quisqualate receptors. J Neurosci 10:2385–2399

    PubMed  CAS  Google Scholar 

  • Peters A, Palade SL, Webster HDF (1991) The fine structure of the nervous system. Oxford University Press, New York

    Google Scholar 

  • Prange O, Murphy TH (1999) Analysis of multiquantal transmitter release from single cultured cortical neuron terminals. J Neurophysiol 81:1810–1817

    PubMed  CAS  Google Scholar 

  • Raastad M, Storm JF, Andersen P (1992) Putative single quantum and single fibre excitatory postsynaptic currents show similar amplitude range and variability in rat hippocampal slices. Eur J Neurosci 4:113–117

    Article  PubMed  Google Scholar 

  • Racca C, Stephenson FA, Streit P, Roberts JD, Somogyi P (2000) NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J Neurosci 20:2512–2522

    PubMed  CAS  Google Scholar 

  • Raghavachari S, Lisman JE (2004) Properties of quantal transmission at CA1 synapses. J Neurophysiol 92:2456–2467

    Article  PubMed  CAS  Google Scholar 

  • Rusakov DA, Kullmann DM (1998) A tortuous and viscous route to understanding diffusion in the brain. Trends Neurosci 21:469–470

    Article  PubMed  CAS  Google Scholar 

  • Rusakov DA, Kullmann DM, Stewart MG (1999) Hippocampal synapses: do they talk to their neighbours? Trends Neurosci 22:382–388

    Article  PubMed  CAS  Google Scholar 

  • Schikorski T, Stevens CF (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci 17:5858–5867

    PubMed  CAS  Google Scholar 

  • Schikorski T, Stevens CF (2001) Morphological correlates of functionally defined synaptic vesicle populations. Nat Neurosci 4:391–395

    Article  PubMed  CAS  Google Scholar 

  • Schmitz D, Frerking M, Nicoll RA (2000) Synaptic activation of presynaptic kainate receptors on hippocampal mossy fiber synapses. Neuron 27:327–338

    Article  PubMed  CAS  Google Scholar 

  • Schwartz EA, Tachibana M (1990) Electrophysiology of glutamate and sodium co-transport in a glial cell of the salamander retina. J Physiol 426:43–80

    PubMed  CAS  Google Scholar 

  • Semyanov A, Kullmann DM (2000) Modulation of GABAergic signaling among interneurons by metabotropic glutamate receptors. Neuron 25:663–672

    Article  PubMed  CAS  Google Scholar 

  • Spruce AE, Breckenridge LJ, Lee AK, Almers W (1990) Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicle. Neuron 4:643–654

    Article  PubMed  CAS  Google Scholar 

  • Stevens CF, Wang Y (1995) Facilitation and depression at single central synapses. Neuron 14:795–802

    Article  PubMed  CAS  Google Scholar 

  • Stiles JR, Van Helden D, Bartol TM Jr, Salpeter EE, Salpeter MM (1996) Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. Proc Natl Acad Sci USA 93:5747–5752

    Article  PubMed  CAS  Google Scholar 

  • Takuma H, Kwak S, Yoshizawa T, Kanazawa I (1999) Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis. Ann Neurol 46:806–815

    Article  PubMed  CAS  Google Scholar 

  • Takumi Y, Ramirez-Leon V, Laake P, Rinvik E, Ottersen OP (1999) Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci 2:618–624

    Article  PubMed  CAS  Google Scholar 

  • Tong G, Jahr CE (1994a) Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13:1195–1203

    Article  PubMed  CAS  Google Scholar 

  • Tong G, Jahr CE (1994b) Multivesicular release from excitatory synapses of cultured hippocampal neurons. Neuron 12:51–59

    Article  PubMed  CAS  Google Scholar 

  • Van der Kloot W, Molgo J (1994) Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol Rev 74:899–991

    PubMed  Google Scholar 

  • Ventriglia F, Di Maio V (2002) Stochastic fluctuations of the synaptic function. Biosystems 67:287–294

    Article  PubMed  Google Scholar 

  • Ventriglia F, Di Maio V (2003) Stochastic fluctuations of the quantal EPSC amplitude in computer simulated excitatory synapses of hippocampus. Biosystems 71:195–204

    Article  PubMed  Google Scholar 

  • Ventriglia F, Maio VD (2003) Synaptic fusion pore structure and AMPA receptor activation according to Brownian simulation of glutamate diffusion. Biol Cybern 88:201–209

    Article  PubMed  Google Scholar 

  • Vogt KE, Nicoll RA (1999) Glutamate and gamma-aminobutyric acid mediate a heterosynaptic depression at mossy fiber synapses in the hippocampus. Proc Natl Acad Sci USA 96:1118–1122

    Article  PubMed  CAS  Google Scholar 

  • Wadiche JI, Jahr CE (2001) Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron 32:301–313

    Article  PubMed  CAS  Google Scholar 

  • Wadiche JI, Arriza JL, Amara SG, Kavanaugh MP (1995) Kinetics of a human glutamate transporter. Neuron 14:1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Wahl LM, Pouzat C, Stratford KJ (1996) Monte Carlo simulation of fast excitatory synaptic transmission at a hippocampal synapse. J Neurophysiol 75:597–608

    PubMed  CAS  Google Scholar 

  • Wall MJ, Usowicz MM (1998) Development of the quantal properties of evoked and spontaneous synaptic currents at a brain synapse. Nat Neurosci 1:675–682

    Article  PubMed  CAS  Google Scholar 

  • Wathey JC, Nass MM, Lester HA (1979) Numerical reconstruction of the quantal event at nicotinic synapses. Biophys J 27:145–164

    Article  PubMed  CAS  Google Scholar 

  • Wong RK, Prince DA (1981) Afterpotential generation in hippocampal pyramidal cells. J Neurophysiol 45:86–97

    PubMed  CAS  Google Scholar 

  • Wong RK, Prince DA, Basbaum AI (1979) Intradendritic recordings from hippocampal neurons. Proc Natl Acad Sci USA 76:986–990

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Ganetzky B, Bellen HJ, Murthy VN (1999) Tailoring uniform coats for synaptic vesicles during endocytosis. Neuron 23:419–422

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H, Denston CR (1977) Separation of synaptic vesicles of different functional states from the cholinergic synapses of the Torpedo electric organ. Neuroscience 2:715–730

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Paul Tiesinga for critical reading of the manuscript. This work was sponsored by Human Frontier Science Program (RGY-0073/2006); Canadian Institutes of Health Research (MOP-81105); National Science and Engineering Research Council of Canada (NSERC-8687-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Sík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boucher, J., Kröger, H. & Sík, A. Realistic modelling of receptor activation in hippocampal excitatory synapses: analysis of multivesicular release, release location, temperature and synaptic cross-talk. Brain Struct Funct 215, 49–65 (2010). https://doi.org/10.1007/s00429-010-0273-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-010-0273-x

Keywords

Navigation