Advertisement

Brain Structure and Function

, Volume 214, Issue 2–3, pp 263–283 | Cite as

Understanding the molecular basis of Alzheimer’s disease using a Caenorhabditis elegans model system

  • Collin Y. Ewald
  • Chris Li
Review

Abstract

Alzheimer’s disease (AD) is the major cause of dementia in the United States. At the cellular level, the brains of AD patients are characterized by extracellular dense plaques and intracellular neurofibrillary tangles whose major components are the β-amyloid peptide and tau, respectively. The β-amyloid peptide is a cleavage product of the amyloid precursor protein (APP); mutations in APP have been correlated with a small number of cases of familial Alzheimer’s disease. APP is the canonical member of the APP family, whose functions remain unclear. The nematode Caenorhabditis elegans, one of the premier genetic workhorses, is being used in a variety of ways to address the functions of APP and determine how the β-amyloid peptide and tau can induce toxicity. First, the function of the C. elegans APP-related gene, apl-1, is being examined. Although different organisms may use APP and related proteins, such as APL-1, in different functional contexts, the pathways in which they function and the molecules with which they interact are usually conserved. Second, components of the γ-secretase complex and their respective functions are being revealed through genetic analyses in C. elegans. Third, to address questions of toxicity, onset of degeneration, and protective mechanisms, different human β-amyloid peptide and tau variants are being introduced into C. elegans and the resultant transgenic lines examined. Here, we summarize how a simple system such as C. elegans can be used as a model to understand APP function and suppression of β-amyloid peptide and tau toxicity in higher organisms.

Keywords

Model system C. elegans apl-1 Presenilins Beta amyloid Tau 

Notes

Acknowledgments

We wish to thank Casey Brander for help with the figures and lab members for helpful discussions. This work was supported by grants from the Alzheimer’s Association, National Institutes Health, and National Science Foundation (CL) and a National Institutes of Health RCMI grant to City College.

References

  1. Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, Horvitz HR et al (2005) The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell 9(3):403–414. doi: S1534-5807(05)00289-3 PubMedGoogle Scholar
  2. Abrahante JE, Daul AL, Li M, Volk ML, Tennessen JM, Miller EA et al (2003) The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev Cell 4(5):625–637. doi: S1534580703001278 PubMedGoogle Scholar
  3. Arduengo PM, Appleberry OK, Chuang P, L’Hernault SW (1998) The presenilin protein family member SPE-4 localizes to an ER/Golgi derived organelle and is required for proper cytoplasmic partitioning during Caenorhabditis elegans spermatogenesis. J Cell Sci 111:3645–3654PubMedGoogle Scholar
  4. Arya U, Dwivedi H, Subramaniam JR (2009) Reserpine ameliorates Abeta toxicity in the Alzheimer’s disease model in Caenorhabditis elegans. Exp Gerontol 44:462–466PubMedGoogle Scholar
  5. Association (2008) 2008 Alzheimer’s disease facts and figures. Alzheimers Dement 4(2):110–133Google Scholar
  6. Barnes NY, Li L, Yoshikawa K, Schwartz LM, Oppenheim RW, Milligan CE (1998) Increased production of amyloid precursor protein provides a substrate for caspase-3 in dying motoneurons. J Neurosci 18(15):5869–5880PubMedGoogle Scholar
  7. Barsyte D, Lovejoy DA, Lithgow GJ (2001) Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. FASEB J 15(3):627–634. doi: 10.1096/fj.99-0966com PubMedGoogle Scholar
  8. Bleuler M, Stoll WA (1955) Clinical use of reserpine in psychiatry: comparison with chlorpromazine. Ann N Y Acad Sci 61(1):167–173PubMedGoogle Scholar
  9. Brandt R, Gergou A, Wacker I, Fath T, Hutter H (2009) A Caenorhabditis elegans model of tau hyperphosphorylation: induction of developmental defects by transgenic overexpression of Alzheimer’s disease-like modified tau. Neurobiol Aging 30:22–33PubMedGoogle Scholar
  10. Brion JP, Hanger DP, Bruce MT, Couck AM, Flament-Durand J, Anderton BH (1991) Tau in Alzheimer neurofibrillary tangles. N- and C-terminal regions are differentially associated with paired helical filaments and the location of a putative abnormal phosphorylation site. Biochem J 273(Pt 1):127–133PubMedGoogle Scholar
  11. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimer’s Dement 3(3):186–191Google Scholar
  12. Byerly L, Cassada RC, Russell RL (1976) The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction. Dev Biol 51(1):23–33. doi: 0012-1606(76)90119-6 PubMedGoogle Scholar
  13. Cabrejo L, Guyant-Marechal L, Laquerriere A, Vercelletto M, De la Fourniere F, Thomas-Anterion C et al (2006) Phenotype associated with APP duplication in five families. Brain 129(Pt 11):2966–2976PubMedGoogle Scholar
  14. Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M et al (1999) Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet 65(3):664–670. doi: S0002-9297(07)62317-9 PubMedGoogle Scholar
  15. Carmine-Simmen K, Proctor T, Tschape J, Poeck B, Triphan T, Strauss R et al (2009) Neurotoxic effects induced by the Drosophila amyloid-beta peptide suggest a conserved toxic function. Neurobiol Dis 33(2):274–281. doi: S0969-9961(08)00263-5 PubMedGoogle Scholar
  16. Carroll PM, Fitzgerald K (2003) Model organisms in drug discovery. Wiley, New YorkGoogle Scholar
  17. Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L et al (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353(6347):844–846PubMedGoogle Scholar
  18. Chen YZ (2004) APP induces neuronal apoptosis through APP-BP1-mediated downregulation of beta-catenin. Apoptosis 9(4):415–422. doi: 10.1023/B:APPT.0000031447.05354.9f PubMedGoogle Scholar
  19. Chui DH, Tanahashi H, Ozawa K, Ikeda S, Checler F, Ueda O et al (1999) Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nat Med 5(5):560–564 10.1038/8438PubMedGoogle Scholar
  20. Cinar HN, Sweet KL, Hosemann KE, Earley K, Newman AP (2001) The SEL-12 presenilin mediates induction of the Caenorhabditis elegans uterine pi cell fate. Dev Biol 237:173–182PubMedGoogle Scholar
  21. Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313:1604–1610PubMedGoogle Scholar
  22. Curtis-Prior P, Vere D, Fray P (1999) Therapeutic value of Ginkgo biloba in reducing symptoms of decline in mental function. J Pharm Pharmacol 51(5):535–541PubMedGoogle Scholar
  23. Daigle I, Li C (1993) apl-1, a Caenorhabditis elegans gene encoding a protein related to the human beta-amyloid protein precursor. Proc Natl Acad Sci USA 90(24):12045–12049PubMedGoogle Scholar
  24. Davies L, Wolska B, Hilbich C, Multhaup G, Martins R, Simms G et al (1988) A4 amyloid protein deposition and the diagnosis of Alzheimer’s disease: prevalence in aged brains determined by immunocytochemistry compared with conventional neuropathologic techniques. Neurology 38(11):1688–1693PubMedGoogle Scholar
  25. De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS et al (1999) A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398(6727):518–522 10.1038/19083PubMedGoogle Scholar
  26. Delacourte A, Defossez A (1986) Alzheimer’s disease: tau proteins, the promoting factors of microtubule assembly, are major components of paired helical filaments. J Neurol Sci 76(2–3):173–186PubMedGoogle Scholar
  27. Dernburg AF, Zalevsky J, Colaiacovo MP, Villeneuve AM (2000) Transgene-mediated cosuppression in the C. elegans germ line. Genes Dev 14(13):1578–1583PubMedGoogle Scholar
  28. Drake J, Link CD, Butterfield DA (2003) Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid beta-peptide (1–42) in a transgenic Caenorhabditis elegans model. Neurobiol Aging 24(3):415–420PubMedGoogle Scholar
  29. Eimer S (2003) Analysis and suppression of mutant presenilin sel-12 in Caenorhabditis elegans. Dissertation, Ludwig-Maximilians-Universitaet Muenchen, MuenchenGoogle Scholar
  30. Ermekova KS, Zambrano N, Linn H, Minopoli G, Gertler F, Russo T et al (1997) The WW domain of neural protein FE65 interacts with proline-rich motifs in Mena, the mammalian homolog of Drosophila enabled. J Biol Chem 272(52):32869–32877PubMedGoogle Scholar
  31. Fay DS, Fluet A, Johnson CJ, Link CD (1998) In vivo aggregation of beta-amyloid peptide variants. J Neurochem 71(4):1616–1625PubMedGoogle Scholar
  32. Fay DS, Stanley HM, Han M, Wood WB (1999) A Caenorhabditis elegans homologue of hunchback is required for late stages of development but not early embryonic patterning. Dev Biol 205(2):240–253. doi: S0012-1606(98)99096-0 PubMedGoogle Scholar
  33. Florez-McClure ML, Hohsfield LA, Fonte G, Bealor MT, Link CD (2007) Decreased insulin-receptor signaling promotes the autophagic degradation of beta-amyloid peptide in C. elegans. Autophagy 3:569–580PubMedGoogle Scholar
  34. Fonte V, Kapulkin V, Taft A, Fluet A, Friedman D, Link CD (2002) Interaction of intracellular beta amyloid peptide with chaperone proteins. Proc Natl Acad Sci USA 99:9439–9444PubMedGoogle Scholar
  35. Fonte V, Kipp DR, Yerg J 3rd, Merin D, Forrestal M, Wagner E et al (2008) Suppression of in vivo beta-amyloid peptide toxicity by overexpression of the HSP-16.2 small chaperone protein. J Biol Chem 283(2):784–791PubMedGoogle Scholar
  36. Francis R, McGrath G, Zhang J, Ruddy DA, Sym M, Apfeld J et al (2002) aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev Cell 3:85–97PubMedGoogle Scholar
  37. Galvan V, Zhang J, Gorostiza OF, Banwait S, Huang W, Ataie M et al (2008) Long-term prevention of Alzheimer’s disease-like behavioral deficits in PDAPP mice carrying a mutation in Asp664. Behav Brain Res 191(2):246–255. doi: S0166-4328(08)00180-0 PubMedGoogle Scholar
  38. Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, Huang J et al (1999) Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell 97(3):395–406. doi: S0092-8674(00)80748-5 PubMedGoogle Scholar
  39. Glenner GG, Wong CW (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122(3):1131–1135PubMedGoogle Scholar
  40. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349(6311):704–706PubMedGoogle Scholar
  41. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3(4):519–526PubMedGoogle Scholar
  42. Goedert M, Baur CP, Ahringer J, Jakes R, Hasegawa M, Spillantini MG et al (1996) PTL-1, a microtubule-associated protein with tau-like repeats from the nematode Caenorhabditis elegans. J Cell Sci 109:2661–2672PubMedGoogle Scholar
  43. Gordon P, Hingula L, Krasny ML, Swienckowski JL, Pokrywka NJ, Raley-Susman KM (2008) The invertebrate microtubule-associated protein PTL-1 functions in mechanosensation and development in Caenorhabditis elegans. Dev Genes Evol 218(10):541–551PubMedGoogle Scholar
  44. Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M, Checler F et al (2000) Intraneuronal Abeta42 accumulation in human brain. Am J Pathol 156(1):15–20PubMedGoogle Scholar
  45. Goutte C, Hepler W, Mickey KM, Priess JR (2000) aph-2 encodes a novel extracellular protein required for GLP-1-mediated signaling. Development 127(11):2481–2492PubMedGoogle Scholar
  46. Goutte C, Tsunozaki M, Hale VA, Priess JR (2002) APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos. Proc Natl Acad Sci USA 99:775–779PubMedGoogle Scholar
  47. Gralle M, Ferreira ST (2007) Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts. Prog Neurobiol 82(1):11–32. doi: S0301-0082(07)00016-0 PubMedGoogle Scholar
  48. Greenwald I (2005) LIN-12/Notch signaling in C. elegans. WormBook, ed. The C. elegans Research Community, WormBook. doi: 10.1895/wormbook.1.10.1, http://www.wormbook.org
  49. Greenwald IS, Sternberg PW, Horvitz HR (1983) The lin-12 locus specifies cell fates in Caenorhabditis elegans. Cell 34(2):435–444. doi: 0092-8674(83)90377-X PubMedGoogle Scholar
  50. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83(13):4913–4917PubMedGoogle Scholar
  51. Gu Y, Chen F, Sanjo N, Kawarai T, Hasegawa H, Duthie M et al (2003) APH-1 interacts with mature and immature forms of presenilins and nicastrin and may play a role in maturation of presenilin/nicastrin complexes. J Biol Chem 278:7374–7380PubMedGoogle Scholar
  52. Guthrie CR, Schellenberg GD, Kraemer BC (2009) SUT-2 potentiates tau-induced neurotoxicity in Caenorhabditis elegans. Hum Mol Genet 18(10):1825–1838PubMedGoogle Scholar
  53. Gutierrez-Zepeda A, Santell R, Wu Z, Brown M, Wu Y, Khan I et al (2005) Soy isoflavone glycitein protects against beta amyloid-induced toxicity and oxidative stress in transgenic Caenorhabditis elegans. BMC Neurosci 6:54PubMedGoogle Scholar
  54. Haass C, Selkoe DJ (1993) Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell 75(6):1039–1042PubMedGoogle Scholar
  55. Hardy J (2009a) APP mutations table. http://www.alzforum.org/res/com/mut/app/table1.asp
  56. Hardy J (2009b) Presenilin-1 mutations table. http://www.alzforum.org/res/com/mut/pre/table1.asp. Accessed 14 Apr 2009
  57. Hardy J (2009c) Presenilin-2 mutations table. http://www.alzforum.org/res/com/mut/pre/table2.asp. Accessed 14 Apr 2009
  58. Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12(10):383–388PubMedGoogle Scholar
  59. Heber S, Herms J, Gajic V, Hainfellner J, Aguzzi A, Rulicke T et al (2000) Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J Neurosci 20(21):7951–7963PubMedGoogle Scholar
  60. Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA (2003) Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 60(8):1119–1122PubMedGoogle Scholar
  61. Hedgecock EM, Culotti JG, Hall DH (1990) The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4(1):61–85. doi: 0896-6273(90)90444-K PubMedGoogle Scholar
  62. Henderson ST, Johnson TE (2001) daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11:1975–1980PubMedGoogle Scholar
  63. Herms J, Anliker B, Heber S, Ring S, Fuhrmann M, Kretzschmar H et al (2004) Cortical dysplasia resembling human type 2 lissencephaly in mice lacking all three APP family members. EMBO J 23(20):4106–4115PubMedGoogle Scholar
  64. Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. Faseb J 13(11):1385–1393PubMedGoogle Scholar
  65. Hornsten A, Lieberthal J, Fadia S, Malins R, Ha L, Xu X et al (2007) APL-1, a Caenorhabditis elegans protein related to the human beta-amyloid precursor protein, is essential for viability. Proc Natl Acad Sci USA 104(6):1971–1976PubMedGoogle Scholar
  66. Horvitz HR (1999) Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res 59(7 Suppl):1701s–1706sPubMedGoogle Scholar
  67. Hsiao KK, Borchelt DR, Olson K, Johannsdottir R, Kitt C, Yunis W et al (1995) Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron 15:1203–1218PubMedGoogle Scholar
  68. Hsu A-L, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300(5622):1142–1145. doi: 10.1126/science.1083701 PubMedGoogle Scholar
  69. Hubbard EJ, Wu G, Kitajewski J, Greenwald I (1997) sel-10, a negative regulator of lin-12 activity in Caenorhabditis elegans, encodes a member of the CDC4 family of proteins. Genes Dev 11(23):3182–3193PubMedGoogle Scholar
  70. Hulette CM, Pericak-Vance MA, Roses AD, Schmechel DE, Yamaoka LH, Gaskell PC et al (1999) Neuropathological features of frontotemporal dementia and Parkinsonism linked to chromosome 17q21-22 (FTDP-17): Duke family 1684. J Neuropathol Exp Neurol 58(8):859–866PubMedGoogle Scholar
  71. Hunt-Newbury R, Viveiros R, Johnsen R, Mah A, Anastas D, Fang L et al (2007) High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol 5(9):e237. doi: 07-PLBI-RA-0103 PubMedGoogle Scholar
  72. Jacobsen JS, Wu CC, Redwine JM, Comery TA, Arias R, Bowlby M et al (2006) Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 103(13):5161–5166PubMedGoogle Scholar
  73. Jarriault S, Greenwald I (2005) Evidence for functional redundancy between C. elegans ADAM proteins SUP-17/Kuzbanian and ADM-4/TACE. Dev Biol 287(1):1–10. doi: S0012-1606(05)00542-7 PubMedGoogle Scholar
  74. Jeon M, Gardner HF, Miller EA, Deshler J, Rougvie AE (1999) Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. Science 286(5442):1141–1146PubMedGoogle Scholar
  75. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH et al (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325(6106):733–736PubMedGoogle Scholar
  76. Kelly SM, Pabit SA, Kitchen CM, Guo P, Marfatia KA, Murphy TJ et al (2007) Recognition of polyadenosine RNA by zinc finger proteins. Proc Natl Acad Sci USA 104(30):12306–12311PubMedGoogle Scholar
  77. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366(6454):461–464PubMedGoogle Scholar
  78. Kidd M (1964) Alzheimer’s disease—an electron microscopical study. Brain 87:307–320PubMedGoogle Scholar
  79. Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ (2003) Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci USA 100(11):6382–6387. doi: 10.1073/pnas.1037392100 PubMedGoogle Scholar
  80. Kokel M, Borland CZ, DeLong L, Horvitz HR, Stern MJ (1998) clr-1 encodes a receptor tyrosine phosphatase that negatively regulates an FGF receptor signaling pathway in Caenorhabditis elegans. Genes Dev 12(10):1425–1437PubMedGoogle Scholar
  81. Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA 83(11):4044–4048PubMedGoogle Scholar
  82. Kraemer BC, Schellenberg GD (2007) SUT-1 enables tau-induced neurotoxicity in C. elegans. Hum Mol Genet 16:1959–1971PubMedGoogle Scholar
  83. Kraemer BC, Zhang B, Leverenz JB, Thomas JH, Trojanowski JQ, Schellenberg GD (2003) Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci USA 100:9980–9985PubMedGoogle Scholar
  84. Krigman MR, Feldman RG, Bensch K (1965) Alzheimer’s presenile dementia. A histochemical and electron microscopic study. Lab Invest 14:381–396PubMedGoogle Scholar
  85. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA et al (2008) Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA 105(10):3903–3908PubMedGoogle Scholar
  86. Kuo YM, Beach TG, Sue LI, Scott S, Layne KJ, Kokjohn TA et al (2001) The evolution of A beta peptide burden in the APP23 transgenic mice: implications for A beta deposition in Alzheimer disease. Mol Med 7(9):609–618PubMedGoogle Scholar
  87. Kwon J (2008) Tau mutations table. http://www.alzforum.org/res/com/mut/tau/table1.asp
  88. L’Hernault SW, Arduengo PM (1992) Mutation of a putative sperm membrane protein in Caenorhabditis elegans prevents sperm differentiation but not its associated meiotic divisions. J Cell Biol 119:55–68PubMedGoogle Scholar
  89. LaFerla FM, Tinkle BT, Bieberich CJ, Haudenschild CC, Jay G (1995) The Alzheimer’s A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet 9(1):21–30PubMedGoogle Scholar
  90. LaFerla FM, Troncoso JC, Strickland DK, Kawas CH, Jay G (1997) Neuronal cell death in Alzheimer’s disease correlates with apoE uptake and intracellular Abeta stabilization. J Clin Invest 100(2):310–320. doi: 10.1172/JCI119536 PubMedGoogle Scholar
  91. Le Bars PL, Katz MM, Berman N, Itil TM, Freedman AM, Schatzberg AF (1997) A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. North American EGb Study Group. Jama 278(16):1327–1332PubMedGoogle Scholar
  92. Le Bars PL, Kieser M, Itil KZ (2000) A 26-week analysis of a double-blind, placebo-controlled trial of the ginkgo biloba extract EGb 761 in dementia. Dement Geriatr Cogn Disord 11(4):230–237PubMedGoogle Scholar
  93. Levitan D, Greenwald I (1995) Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377(6547):351–354PubMedGoogle Scholar
  94. Levitan D, Greenwald I (1998) Effects of SEL-12 presenilin on LIN-12 localization and function in Caenorhabditis elegans. Development 125(18):3599–3606PubMedGoogle Scholar
  95. Levitan D, Doyle TG, Brousseau D, Lee MK, Thinakaran G, Slunt HH et al (1996) Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proc Natl Acad Sci USA 93:14940–14944PubMedGoogle Scholar
  96. Levitan D, Yu G, St George Hyslop P, Goutte C (2001) APH-2/nicastrin functions in LIN-12/Notch signaling in the Caenorhabditis elegans somatic gonad. Dev Biol 240:654–661PubMedGoogle Scholar
  97. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH et al (1995a) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269(5226):973–977PubMedGoogle Scholar
  98. Levy-Lahad E, Wijsman EM, Nemens E, Anderson L, Goddard KA, Weber JL et al (1995b) A familial Alzheimer’s disease locus on chromosome 1. Science 269(5226):970–973PubMedGoogle Scholar
  99. Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G et al (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293(5534):1487–1491PubMedGoogle Scholar
  100. Li X, Greenwald I (1996) Membrane topology of the C. elegans SEL-12 presenilin. Neuron 17:1015–1021PubMedGoogle Scholar
  101. Li X, Greenwald I (1997) HOP-1, a Caenorhabditis elegans presenilin, appears to be functionally redundant with SEL-12 presenilin and to facilitate LIN-12 and GLP-1 signaling. Proc Natl Acad Sci USA 94(22):12204–12209PubMedGoogle Scholar
  102. Li ZW, Stark G, Gotz J, Rulicke T, Gschwind M, Huber G et al (1996) Generation of mice with a 200-kb amyloid precursor protein gene deletion by Cre recombinase-mediated site-specific recombination in embryonic stem cells. Proc Natl Acad Sci USA 93(12):6158–6162PubMedGoogle Scholar
  103. Li QX, Maynard C, Cappai R, McLean CA, Cherny RA, Lynch T et al (1999) Intracellular accumulation of detergent-soluble amyloidogenic A beta fragment of Alzheimer’s disease precursor protein in the hippocampus of aged transgenic mice. J Neurochem 72(6):2479–2487PubMedGoogle Scholar
  104. Li YM, Lai MT, Xu M, Huang Q, DiMuzio-Mower J, Sardana MK et al (2000) Presenilin 1 is linked with gamma-secretase activity in the detergent solubilized state. Proc Natl Acad Sci USA 97(11):6138–6143. doi: 10.1073/pnas.110126897 PubMedGoogle Scholar
  105. Li J, Pauley AM, Myers RL, Shuang R, Brashler JR, Yan R et al (2002) SEL-10 interacts with presenilin 1, facilitates its ubiquitination, and alters A-beta peptide production. J Neurochem 82(6):1540–1548PubMedGoogle Scholar
  106. Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278(5341):1319–1322PubMedGoogle Scholar
  107. Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 28:139–145PubMedGoogle Scholar
  108. Link CD (1995) Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci USA 92:9368–9372PubMedGoogle Scholar
  109. Link CD (2006) C. elegans models of age-associated neurodegenerative diseases: lessons from transgenic worm models of Alzheimer’s disease. Exp Gerontol 41:1007–1013PubMedGoogle Scholar
  110. Link CD, Johnson CJ, Fonte V, Paupard M, Hall DH, Styren S et al (2001) Visualization of fibrillar amyloid deposits in living, transgenic Caenorhabditis elegans animals using the sensitive amyloid dye, X-34. Neurobiol Aging 22:217–226PubMedGoogle Scholar
  111. Link CD, Taft A, Kapulkin V, Duke K, Kim S, Fei Q et al (2003) Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer’s disease model. Neurobiol Aging 24:397–413PubMedGoogle Scholar
  112. Lorenzo A, Yankner BA (1996) Amyloid fibril toxicity in Alzheimer’s disease and diabetes. Ann N Y Acad Sci 777:89–95PubMedGoogle Scholar
  113. Luo L, Tully T, White K (1992) Human amyloid precursor protein ameliorates behavioral deficit of flies deleted for Appl gene. Neuron 9(4):595–605PubMedGoogle Scholar
  114. Luo Y, Smith JV, Paramasivam V, Burdick A, Curry KJ, Buford JP et al (2002) Inhibition of amyloid-beta aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc Natl Acad Sci USA 99:12197–12202PubMedGoogle Scholar
  115. Luse SA, Smith KR Jr (1964) The ultrastructure of senile plaques. Am J Pathol 44(4):553–563PubMedGoogle Scholar
  116. MacMorris M, Kumar M, Lasda E, Larsen A, Kraemer B, Blumenthal T (2007) A novel family of C. elegans snRNPs contains proteins associated with trans-splicing. RNA 13(4):511–520PubMedGoogle Scholar
  117. Magara F, Muller U, Li ZW, Lipp HP, Weissmann C, Stagljar M et al (1999) Genetic background changes the pattern of forebrain commissure defects in transgenic mice underexpressing the beta-amyloid-precursor protein. Proc Natl Acad Sci USA 96(8):4656–4661PubMedGoogle Scholar
  118. Mahn K, Borras C, Knock GA, Taylor P, Khan IY, Sugden D et al (2005) Dietary soy isoflavone induced increases in antioxidant and eNOS gene expression lead to improved endothelial function and reduced blood pressure in vivo. Faseb J 19(12):1755–1757PubMedGoogle Scholar
  119. Mann DM, Jones D, South PW, Snowden JS, Neary D (1992) Deposition of amyloid beta protein in non-Alzheimer dementias: evidence for a neuronal origin of parenchymal deposits of beta protein in neurodegenerative disease. Acta Neuropathol 83(4):415–419PubMedGoogle Scholar
  120. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82(12):4245–4249PubMedGoogle Scholar
  121. McColl G, Roberts BR, Gunn AP, Perez KA, Tew DJ, Masters CL et al (2009) The Caernorhabditis elegans Abeta1-42 model of Alzheimer’s disease predominantly expresses Abeta3-42. J Biol Chem 284(34):22697–22702PubMedGoogle Scholar
  122. McDermott JB, Aamodt S, Aamodt E (1996) ptl-1, a Caenorhabditis elegans gene whose products are homologous to the tau microtubule-associated proteins. Biochemistry 35(29):9415–9423PubMedGoogle Scholar
  123. Mello C, Fire A (1995) DNA transformation. Methods Cell Biol 48:451–482PubMedGoogle Scholar
  124. Metzger RR, Brown JM, Sandoval V, Rau KS, Elwan MA, Miller GW et al (2002) Inhibitory effect of reserpine on dopamine transporter function. Eur J Pharmacol 456(1–3):39–43PubMedGoogle Scholar
  125. Miklossy J, Taddei K, Suva D, Verdile G, Fonte J, Fisher C et al (2003) Two novel presenilin-1 mutations (Y256S and Q222H) are associated with early-onset Alzheimer’s disease. Neurobiol Aging 24(5):655–662PubMedGoogle Scholar
  126. Mirra SS, Murrell JR, Gearing M, Spillantini MG, Goedert M, Crowther RA et al (1999) Tau pathology in a family with dementia and a P301L mutation in tau. J Neuropathol Exp Neurol 58(4):335–345PubMedGoogle Scholar
  127. Mix JA, Crews WD Jr (2002) A double-blind, placebo-controlled, randomized trial of Ginkgo biloba extract EGb 761 in a sample of cognitively intact older adults: neuropsychological findings. Hum Psychopharmacol 17(6):267–277PubMedGoogle Scholar
  128. Miyasaka T, Ding Z, Gengyo-Ando K, Oue M, Yamaguchi H, Mitani S et al (2005) Progressive neurodegeneration in C. elegans model of tauopathy. Neurobiol Dis 20(2):372–383. doi: S0969-9961(05)00079-3 PubMedGoogle Scholar
  129. Mucke L, Masliah E, Johnson WB, Ruppe MD, Alford M, Rockenstein EM et al (1994) Synaptotrophic effects of human amyloid beta protein precursors in the cortex of transgenic mice. Brain Res 666(2):151–167. doi: 0006-8993(94)90767-6 PubMedGoogle Scholar
  130. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J et al (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424(6946):277–283PubMedGoogle Scholar
  131. Murrell J, Farlow M, Ghetti B, Benson MD (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science 254(5028):97–99PubMedGoogle Scholar
  132. Napolitano F, D’Angelo F, Bimonte M, Perrina V, D’Ambrosio C, Scaloni A et al (2008) A differential proteomic approach reveals an evolutionary conserved regulation of Nme proteins by Fe65 in C. elegans and mouse. Neurochem Res 33(12):2547–2555. doi: 10.1007/s11064-008-9683-z PubMedGoogle Scholar
  133. Nikolaev A, Mclaughlin T, O’Leary DD, Tessier-Lavigne M (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457:981–989PubMedGoogle Scholar
  134. Niwa R, Zhou F, Li C, Slack FJ (2008) The expression of the Alzheimer’s amyloid precursor protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans. Dev Biol 315(2):418–425PubMedGoogle Scholar
  135. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A et al (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2):113–122PubMedGoogle Scholar
  136. Nunan J, Small DH (2000) Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS Lett 483(1):6–10. doi: S0014-5793(00)02076-7 PubMedGoogle Scholar
  137. Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003a) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24(8):1063–1070PubMedGoogle Scholar
  138. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R et al (2003b) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421PubMedGoogle Scholar
  139. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA et al (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389(6654):994–999PubMedGoogle Scholar
  140. Oken BS, Storzbach DM, Kaye JA (1998) The efficacy of Ginkgo biloba on cognitive function in Alzheimer disease. Arch Neurol 55(11):1409–1415PubMedGoogle Scholar
  141. Okochi M, Eimer S, Bottcher A, Baumeister R, Romig H, Walter J et al (2000) A loss of function mutant of the presenilin homologue SEL-12 undergoes aberrant endoproteolysis in Caenorhabditis elegans and increases abeta 42 generation in human cells. J Biol Chem 275(52):40925–40932. doi: 10.1074/jbc.M005254200 PubMedGoogle Scholar
  142. Perez RG, Zheng H, Van der Ploeg LH, Koo EH (1997) The beta-amyloid precursor protein of Alzheimer’s disease enhances neuron viability and modulates neuronal polarity. J Neurosci 17(24):9407–9414PubMedGoogle Scholar
  143. Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW (1993) Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 13(4):1676–1687PubMedGoogle Scholar
  144. Ponte P, Gonzalez-DeWhitt P, Schilling J, Miller J, Hsu D, Greenberg B et al (1988) A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature 331(6156):525–527. doi: 10.1038/331525a0 PubMedGoogle Scholar
  145. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906. doi: 10.1038/35002607 PubMedGoogle Scholar
  146. Ring S, Weyer SW, Kilian SB, Waldron E, Pietrzik CU, Filippov MA et al (2007) The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J Neurosci 27(29):7817–7826PubMedGoogle Scholar
  147. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y et al (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376(6543):775–778PubMedGoogle Scholar
  148. Rosen DR, Martin-Morris L, Luo LQ, White K (1989) A Drosophila gene encoding a protein resembling the human beta-amyloid protein precursor. Proc Natl Acad Sci USA 86(7):2478–2482PubMedGoogle Scholar
  149. Roush SF, Slack FJ (2009) Transcription of the C. elegans let-7 microRNA is temporally regulated by one of its targets, hbl-1. Dev Biol. doi: S0012-1606(09)01062-8
  150. Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, Vital A et al (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38(1):24–26PubMedGoogle Scholar
  151. Sabo SL, Ikin AF, Buxbaum JD, Greengard P (2001) The Alzheimer amyloid precursor protein (APP) and FE65, an APP-binding protein, regulate cell movement. J Cell Biol 153(7):1403–1414PubMedGoogle Scholar
  152. Schmitt FA, Davis DG, Wekstein DR, Smith CD, Ashford JW, Markesbery WR (2000) “Preclinical” AD revisited: neuropathology of cognitively normal older adults. Neurology 55(3):370–376PubMedGoogle Scholar
  153. Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399(suppl 6738):A23–A31PubMedGoogle Scholar
  154. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMedGoogle Scholar
  155. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375(6534):754–760PubMedGoogle Scholar
  156. Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 5(4):659–669. doi: S1097-2765(00)80245-2 PubMedGoogle Scholar
  157. Sleegers K, Brouwers N, Gijselinck I, Theuns J, Goossens D, Wauters J et al (2006) APP duplication is sufficient to cause early onset Alzheimer’s dementia with cerebral amyloid angiopathy. Brain 129(Pt 11):2977–2983PubMedGoogle Scholar
  158. Slunt HH, Thinakaran G, Von Koch C, Lo AC, Tanzi RE, Sisodia SS (1994) Expression of a ubiquitous, cross-reactive homologue of the mouse beta-amyloid precursor protein (APP). J Biol Chem 269(4):2637–2644PubMedGoogle Scholar
  159. Smith JV, Luo Y (2003) Elevation of oxidative free radicals in Alzheimer’s disease models can be attenuated by Ginkgo biloba extract EGb 761. J Alzheimers Dis 5(4):287–300PubMedGoogle Scholar
  160. Smith JV, Burdick AJ, Golik P, Khan I, Wallace D, Luo Y (2002) Anti-apoptotic properties of Ginkgo biloba extract EGb 761 in differentiated PC12 cells. Cell Mol Biol (Noisy-le-grand) 48(6):699–707Google Scholar
  161. Spillantini MG, Bird TD, Ghetti B (1998) Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol 8(2):387–402PubMedGoogle Scholar
  162. Sprecher CA, Grant FJ, Grimm G, O’Hara PJ, Norris F, Norris K et al (1993) Molecular cloning of the cDNA for a human amyloid precursor protein homolog: evidence for a multigene family. Biochemistry 32(17):4481–4486PubMedGoogle Scholar
  163. Srivastava D, Arya U, SoundaraRajan T, Dwivedi H, Kumar S, Subramaniam JR (2008) Reserpine can confer stress tolerance and lifespan extension in the nematode C. elegans. Biogerontology 9(5):309–316PubMedGoogle Scholar
  164. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R et al (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—is this type 3 diabetes? J Alzheimers Dis 7(1):63–80PubMedGoogle Scholar
  165. Steinbach JP, Muller U, Leist M, Li ZW, Nicotera P, Aguzzi A (1998) Hypersensitivity to seizures in beta-amyloid precursor protein deficient mice. Cell Death Differ 5(10):858–866PubMedGoogle Scholar
  166. Struhl G, Greenwald I (1999) Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398(6727):522–525. doi: 10.1038/19091 PubMedGoogle Scholar
  167. Sulston JE, White JG (1980) Regulation and cell autonomy during postembryonic development of Caenorhabditis elegans. Dev Biol 78:577–597PubMedGoogle Scholar
  168. Tanzi RE, McClatchey AI, Lamperti ED, Villa-Komaroff L, Gusella JF, Neve RL (1988) Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease. Nature 331(6156):528–530. doi: 10.1038/331528a0 PubMedGoogle Scholar
  169. Tax FE, Thomas JH, Ferguson EL, Horvitz HR (1997) Identification and characterization of genes that interact with lin-12 in Caenorhabditis elegans. Genetics 147(4):1675–1695PubMedGoogle Scholar
  170. Terry RD, Gonatas NK, Weiss M (1964) Ultrastructural studies in Alzheimer’s presenile dementia. Am J Pathol 44:269–297PubMedGoogle Scholar
  171. Thinakaran G, Borchelt DR, Lee MK, Slunt HH, Spitzer L, Kim G et al (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17(1):181–190. doi: S0896-6273(00)80291-3 PubMedGoogle Scholar
  172. Tremml P, Lipp HP, Muller U, Ricceri L, Wolfer DP (1998) Neurobehavioral development, adult openfield exploration and swimming navigation learning in mice with a modified beta-amyloid precursor protein gene. Behav Brain Res 95(1):65–76PubMedGoogle Scholar
  173. Vakil RJ (1949) A clinical trial of Rauwolfia serpentina in essential hypertension. Br Heart J 11(4):350–355PubMedGoogle Scholar
  174. von Koch CS, Zheng H, Chen H, Trumbauer M, Thinakaran G, van der Ploeg LH et al (1997) Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice. Neurobiol Aging 18(6):661–669Google Scholar
  175. Walker GA, White TM, McColl G, Jenkins NL, Babich S, Candido EP et al (2001) Heat shock protein accumulation is upregulated in a long-lived mutant of Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 56:B281–B287PubMedGoogle Scholar
  176. Wang Y, Ha Y (2004) The X-ray structure of an antiparallel dimer of the human amyloid precursor protein E2 domain. Mol Cell 15:343–353PubMedGoogle Scholar
  177. Wasco W, Bupp K, Magendantz M, Gusella JF, Tanzi RE, Solomon F (1992) Identification of a mouse brain cDNA that encodes a protein related to the Alzheimer disease-associated amyloid beta protein precursor. Proc Natl Acad Sci USA 89:10758–10762PubMedGoogle Scholar
  178. Wasco W, Gurubhagavatula S, Paradis MD, Romano DM, Sisodia SS, Hyman BT et al (1993a) Isolation and characterization of APLP2 encoding a homologue of the Alzheimer’s associated amyloid beta protein precursor. Nat Genet 5(1):95–100. doi: 10.1038/ng0993-95 PubMedGoogle Scholar
  179. Wasco W, Peppercorn J, Tanzi RE (1993b) Search for the genes responsible for familial Alzheimer’s disease. Ann N Y Acad Sci 695:203–208PubMedGoogle Scholar
  180. Wen C, Metzstein MM, Greenwald I (1997) SUP-17, a Caenorhabditis elegans ADAM protein related to Drosophila KUZBANIAN, and its role in LIN-12/NOTCH signalling. Development 124(23):4759–4767PubMedGoogle Scholar
  181. Wen C, Levitan D, Li X, Greenwald I (2000) spr-2, a suppressor of the egg-laying defect caused by loss of sel-12 presenilin in Caenorhabditis elegans, is a member of the SET protein subfamily. Proc Natl Acad Sci USA 97:14524–14529PubMedGoogle Scholar
  182. Westlund B, Parry D, Clover R, Basson M, Johnson CD (1999) Reverse genetic analysis of Caenorhabditis elegans presenilins reveals redundant but unequal roles for sel-12 and hop-1 in Notch-pathway signaling. Proc Natl Acad Sci USA 96(5):2497–2502PubMedGoogle Scholar
  183. Winter E (1991) Effects of an extract of Ginkgo biloba on learning and memory in mice. Pharmacol Biochem Behav 38(1):109–114PubMedGoogle Scholar
  184. Winter JC (1998) The effects of an extract of Ginkgo biloba, EGb 761, on cognitive behavior and longevity in the rat. Physiol Behav 63(3):425–433PubMedGoogle Scholar
  185. Wirths O, Multhaup G, Czech C, Blanchard V, Moussaoui S, Tremp G et al (2001) Intraneuronal Abeta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett 306(1–2):116–120. doi: S0304-3940(01)01876-6 PubMedGoogle Scholar
  186. Withee J, Galligan B, Hawkins N, Garriga G (2004) Caenorhabditis elegans WASP and Ena/VASP proteins play compensatory roles in morphogenesis and neuronal cell migration. Genetics 167(3):1165–1176. doi: 10.1534/genetics.103.025676 PubMedGoogle Scholar
  187. Wittenburg N, Eimer S, Lakowski B, Röhrig S, Rudolph C, Baumeister R (2000) Presenilin is required for proper morphology and function of neurons in C. elegans. Nature 406:306–309PubMedGoogle Scholar
  188. Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398(6727):513–517. doi: 10.1038/19077 PubMedGoogle Scholar
  189. Wu Y, Luo Y (2005) Transgenic C. elegans as a model in Alzheimer’s research. Curr Alzheimer Res 2(1):37–45PubMedGoogle Scholar
  190. Wu G, Hubbard EJ, Kitajewski JK, Greenwald I (1998) Evidence for functional and physical association between Caenorhabditis elegans SEL-10, a Cdc4p-related protein, and SEL-12 presenilin. Proc Natl Acad Sci USA 95:15787–15791PubMedGoogle Scholar
  191. Wu Y, Wu Z, Butko P, Christen Y, Lambert MP, Klein WL et al (2006) Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J Neurosci 26:13102–13113PubMedGoogle Scholar
  192. Xu K, Tavernarakis N, Driscoll M (2001) Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca(2+) release from the endoplasmic reticulum. Neuron 31(6):957–971. doi: S0896-6273(01)00432-9 PubMedGoogle Scholar
  193. Yankner BA, Duffy LK, Kirschner DA (1990) Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 250(4978):279–282PubMedGoogle Scholar
  194. Yatin SM, Varadarajan S, Link CD, Butterfield DA (1999) In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid beta-peptide (1–42). Neurobiol Aging 20:325–330 (discussion 339–342)PubMedGoogle Scholar
  195. Ye Y, Lukinova N, Fortini ME (1999) Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature 398(6727):525–529. doi: 10.1038/19096 PubMedGoogle Scholar
  196. Yoshikai S, Sasaki H, Doh-ura K, Furuya H, Sakaki Y (1990) Genomic organization of the human amyloid beta-protein precursor gene. Gene 87(2):257–263PubMedGoogle Scholar
  197. Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A et al (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 407:48–54PubMedGoogle Scholar
  198. Yu WH, Kumar A, Peterhoff C, Shapiro Kulnane L, Uchiyama Y, Lamb BT et al (2004) Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer’s disease. Int J Biochem Cell Biol 36(12):2531–2540. doi: 10.1016/j.biocel.2004.05.010 PubMedGoogle Scholar
  199. Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH et al (2005) Macroautophagy-a novel beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171(1):87–98. doi: jcb.200505082 PubMedGoogle Scholar
  200. Zambrano N, Bimonte M, Arbucci S, Gianni D, Russo T, Bazzicalupo P (2002) feh-1 and apl-1, the Caenorhabditis elegans orthologues of mammalian Fe65 and beta-amyloid precursor protein genes, are involved in the same pathway that controls nematode pharyngeal pumping. J Cell Sci 115(Pt 7):1411–1422PubMedGoogle Scholar
  201. Zheng H, Koo E (2006) The amyloid precursor protein: beyond amyloid. Mol Neurodegener 1:5PubMedGoogle Scholar
  202. Zheng H, Jiang M, Trumbauer ME, Sirinathsinghji DJ, Hopkins R, Smith DW et al (1995) beta-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 81(4):525–531PubMedGoogle Scholar
  203. Zheng WH, Bastianetto S, Mennicken F, Ma W, Kar S (2002) Amyloid beta peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience 115(1):201–211. doi: S0306452202004049 PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Graduate Center and Department of BiologyCity College of the City University of New YorkNew YorkUSA
  2. 2.Department of BiologyCity College of New YorkNew YorkUSA

Personalised recommendations