Skip to main content

Advertisement

Log in

Presenilin transgenic mice as models of Alzheimer’s disease

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Mutations in presenilin-1 (PS1) and presenilin-2 (PS2) cause familial Alzheimer’s disease (FAD). Presenilins influence multiple molecular pathways and are best known for their role in the γ-secretase cleavage of type I transmembrane proteins including the amyloid precursor protein (APP). PS1 and PS2 FAD mutant transgenic mice have been generated using a variety of promoters. PS1-associated FAD mutations have also been knocked into the endogenous mouse gene. PS FAD mutant mice consistently show elevations of Aβ42 with little if any effect on Aβ40. When crossed with plaque forming APP FAD mutant lines, the PS1 FAD mutants cause earlier and more extensive plaque deposition. Although single transgenic PS1 or PS2 mice do not form plaques, they exhibit a number of pathological features including age-related neuronal and synaptic loss as well as vascular pathology. They also exhibit increased susceptibility to excitotoxic injury most likely on the basis of exaggerated calcium release from the endoplasmic reticulum. Electrophysiologically long-term potentiation in the hippocampus is increased in young PS1 FAD mutant mice but this effect appears to be lost with aging. In most studies neurogenesis in the adult hippocampus is also impaired by PS1 FAD mutants. Mice in which PS1 has been conditionally knocked out in adult forebrain on a PS2 null background (PS1/2 cDKO) develop a striking neurodegeneration that mimics AD neuropathology in being associated with neuronal and synaptic loss, astrogliosis and hyperphosphorylation of tau, although it is not accompanied by plaque deposits. The relevance of PS transgenic mice as models of AD is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki C, Lee J, Nedelescu H, Ahmed T, Ho A, Shen J (2009) Increased levels of NMDA receptor NR2A subunits at pre- and postsynaptic sites of the hippocampal CA1: An early response to conditional double knockout of presenilin 1 and 2. J Comp Neurol 517:512–523

    CAS  PubMed  Google Scholar 

  • Auffret A, Gautheron V, Repici M, Kraftsik R, Mount HT, Mariani J, Rovira C (2009) Age-dependent impairment of spine morphology and synaptic plasticity in hippocampal CA1 neurons of a presenilin 1 transgenic mouse model of Alzheimer’s disease. J Neurosci 29:10144–10152

    CAS  PubMed  Google Scholar 

  • Barrow PA, Empson RM, Gladwell SJ, Anderson CM, Killick R, Yu X, Jefferys JG, Duff K (2000) Functional phenotype in transgenic mice expressing mutant human presenilin-1. Neurobiol Dis 7:119–126

    CAS  PubMed  Google Scholar 

  • Beglopoulos V, Sun X, Saura CA, Lemere CA, Kim RD, Shen J (2004) Reduced beta-amyloid production and increased inflammatory responses in presenilin conditional knock-out mice. J Biol Chem 279:46907–46914

    CAS  PubMed  Google Scholar 

  • Bertram L, Tanzi RE (2004) The current status of Alzheimer’s disease genetics: what do we tell the patients? Pharmacol Res 50:385–396

    CAS  PubMed  Google Scholar 

  • Boekhoorn K, Joels M, Lucassen PJ (2006) Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol Dis 24:1–14

    CAS  PubMed  Google Scholar 

  • Boeras DI, Granic A, Padmanabhan J, Crespo NC, Rojiani AM, Potter H (2008) Alzheimer’s presenilin 1 causes chromosome missegregation and aneuploidy. Neurobiol Aging 29:319–328

    CAS  PubMed  Google Scholar 

  • Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada CM, Kim G, Seekins S, Yager D, Slunt HH, Wang R, Seeger M, Levey AI, Gandy SE, Copeland NG, Jenkins NA, Price DL, Younkin SG, Sisodia SS (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβ1–42/1–40 ratio in vitro and in vivo. Neuron 17:1005–1013

    CAS  PubMed  Google Scholar 

  • Borchelt DR, Ratovitski T, van Lare J, Lee MK, Gonzales V, Jenkins NA, Copeland NG, Price DL, Sisodia SS (1997) Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19:939–945

    CAS  PubMed  Google Scholar 

  • Boulianne GL, Livne-Bar I, Humphreys JM, Liang Y, Lin C, Rogaev E, St. George-Hyslop P (1997) Cloning and characterization of the Drosophila presenilin homologue. Neuroreport 8:1025–1029

    CAS  PubMed  Google Scholar 

  • Casas C, Sergeant N, Itier JM, Blanchard V, Wirths O, van der Kolk N, Vingtdeux V, van de Steeg E, Ret G, Canton T, Drobecq H, Clark A, Bonici B, Delacourte A, Benavides J, Schmitz C, Tremp G, Bayer TA, Benoit P, Pradier L (2004) Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Aβ42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 165:1289–1300

    CAS  PubMed  Google Scholar 

  • Cataldo AM, Peterhoff CM, Schmidt SD, Terio NB, Duff K, Beard M, Mathews PM, Nixon RA (2004) Presenilin mutations in familial Alzheimer disease and transgenic mouse models accelerate neuronal lysosomal pathology. J Neuropathol Exp Neurol 63:821–830

    CAS  PubMed  Google Scholar 

  • Chen Q, Nakajima A, Choi SH, Xiong X, Sisodia SS, Tang YP (2008a) Adult neurogenesis is functionally associated with AD-like neurodegeneration. Neurobiol Dis 29:316–326

    CAS  PubMed  Google Scholar 

  • Chen Q, Nakajima A, Choi SH, Xiong X, Tang YP (2008b) Loss of presenilin function causes Alzheimer’s disease-like neurodegeneration in the mouse. J Neurosci Res 86:1615–1625

    CAS  PubMed  Google Scholar 

  • Chevallier NL, Soriano S, Kang DE, Masliah E, Hu G, Koo EH (2005) Perturbed neurogenesis in the adult hippocampus associated with presenilin-1 A246E mutation. Am J Pathol 167:151–159

    CAS  PubMed  Google Scholar 

  • Choi SH, Veeraraghavalu K, Lazarov O, Marler S, Ransohoff RM, Ramirez JM, Sisodia SS (2008) Non-cell-autonomous effects of presenilin 1 variants on enrichment-mediated hippocampal progenitor cell proliferation and differentiation. Neuron 59:568–580

    CAS  PubMed  Google Scholar 

  • Chui DH, Tanahashi H, Ozawa K, Ikeda S, Checler F, Ueda O, Suzuki H, Araki W, Inoue H, Shirotani K, Takahashi K, Gallyas F, Tabira T (1999) Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nat Med 5:560–564

    CAS  PubMed  Google Scholar 

  • Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, Johnson-Wood K, Lee M, Seubert P, Davis A, Kholodenko D, Motter R, Sherrington R, Perry B, Yao H, Strome R, Lieberburg I, Rommens J, Kim S, Schenk D, Fraser P, St. George Hyslop P, Selkoe DJ (1997) Mutant presenilins of Alzheimer’s disease increase production of 42- residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med 3:67–72

    CAS  PubMed  Google Scholar 

  • Davis JA, Naruse S, Chen H, Eckman C, Younkin S, Price DL, Borchelt DR, Sisodia SS, Wong PC (1998) An Alzheimer’s disease-linked PS1 variant rescues the developmental abnormalities of PS1-deficient embryos. Neuron 20:603–609

    CAS  PubMed  Google Scholar 

  • De Strooper B (2007) Loss-of-function presenilin mutations in Alzheimer disease. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Rep 8:141–146

    PubMed  Google Scholar 

  • Deng Y, Tarassishin L, Kallhoff V, Peethumnongsin E, Wu L, Li YM, Zheng H (2006) Deletion of presenilin 1 hydrophilic loop sequence leads to impaired gamma-secretase activity and exacerbated amyloid pathology. J Neurosci 26:3845–3854

    CAS  PubMed  Google Scholar 

  • Dewachter I, Van Dorpe J, Smeijers L, Gilis M, Kuiperi C, Laenen I, Caluwaerts N, Moechars D, Checler F, Vanderstichele H, Van Leuven F (2000) Aging increased amyloid peptide and caused amyloid plaques in brain of old APP/V717I transgenic mice by a different mechanism than mutant presenilin1. J Neurosci 20:6452–6458

    CAS  PubMed  Google Scholar 

  • Dewachter I, Reverse D, Caluwaerts N, Ris L, Kuiperi C, Van den Haute C, Spittaels K, Umans L, Serneels L, Thiry E, Moechars D, Mercken M, Godaux E, Van Leuven F (2002) Neuronal deficiency of presenilin 1 inhibits amyloid plaque formation and corrects hippocampal long-term potentiation but not a cognitive defect of amyloid precursor protein [V717I] transgenic mice. J Neurosci 22:3445–3453

    CAS  PubMed  Google Scholar 

  • Dewachter I, Ris L, Croes S, Borghgraef P, Devijver H, Voets T, Nilius B, Godaux E, Van Leuven F (2008) Modulation of synaptic plasticity and Tau phosphorylation by wild-type and mutant presenilin1. Neurobiol Aging 29:639–652

    CAS  PubMed  Google Scholar 

  • Dong S, Li C, Wu P, Tsien JZ, Hu Y (2007) Environment enrichment rescues the neurodegenerative phenotypes in presenilins-deficient mice. Eur J Neurosci 26:101–112

    PubMed  Google Scholar 

  • Donovan MH, Yazdani U, Norris RD, Games D, German DC, Eisch AJ (2006) Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer’s disease. J Comp Neurol 495:70–83

    PubMed  Google Scholar 

  • Donoviel DB, Hadjantonakis AK, Ikeda M, Zheng H, Hyslop PS, Bernstein A (1999) Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev 13:2801–2810

    CAS  PubMed  Google Scholar 

  • Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-tur J, Hutton M, Buée L, Harigaya Y, Yager D, Morgan D, Gordon MN, Holcomb L, Refolo L, Zenk B, Hardy J, Younkin S (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383:710–713

    CAS  PubMed  Google Scholar 

  • Eckert A, Schindowski K, Leutner S, Luckhaus C, Touchet N, Czech C, Muller WE (2001) Alzheimer’s disease-like alterations in peripheral cells from presenilin-1 transgenic mice. Neurobiol Dis 8:331–342

    CAS  PubMed  Google Scholar 

  • Eder-Colli L, Abad-Estarlich N, Pannetier C, Vallet PG, Walzer C, Elder GA, Robakis NK, Bouras C, Savioz A (2009) The presenilin-1 familial Alzheimer’s disease mutation P117L decreases neuronal differentiation of embryonic murine neural progenitor cells. Brain Res Bull 80:296–301

    CAS  PubMed  Google Scholar 

  • Elder GA, Tezapsidis N, Carter J, Shioi J, Bouras C, Li H-C, Johnston JM, Efthimiopoulos S, Friedrich VL, Robakis NK (1996) Identification and neuron specific expression of the S182/presenilin I protein in human and rodent brains. J Neurosci Res 45:308–320

    CAS  PubMed  Google Scholar 

  • Elder GA, De Gasperi R, Gama Sosa MA (2006) Research update: neurogenesis in adult brain and neuropsychiatric disorders. Mt Sinai J Med 73:931–940

    PubMed  Google Scholar 

  • Ertekin-Taner N (2007) Genetics of Alzheimer’s disease: a centennial review. Neurol Clin 25:611–667

    PubMed  Google Scholar 

  • Feng R, Rampon C, Tang YP, Shrom D, Jin J, Kyin M, Sopher B, Martin GM, Kim SH, Langdon RB, Sisodia SS, Tsien JZ (2001) Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 32:911–926

    CAS  PubMed  Google Scholar 

  • Feng R, Wang H, Wang J, Shrom D, Zeng X, Tsien JZ (2004) Forebrain degeneration and ventricle enlargement caused by double knockout of Alzheimer’s presenilin-1 and presenilin-2. Proc Natl Acad Sci USA 101:8162–8167

    CAS  PubMed  Google Scholar 

  • Flood DG, Reaume AG, Dorfman KS, Lin YG, Lang DM, Trusko SP, Savage MJ, Annaert WG, De Strooper B, Siman R, Scott RW (2002) FAD mutant PS-1 gene-targeted mice: increased Aβ42 and Aβ deposition without APP overproduction. Neurobiol Aging 23:335–348

    CAS  PubMed  Google Scholar 

  • Fu YJ, Xiong S, Lovell MA, Lynn BC (2009) Quantitative proteomic analysis of mitochondria in aging PS-1 transgenic mice. Cell Mol Neurobiol 29:649–664

    CAS  PubMed  Google Scholar 

  • Gama Sosa MA, De Gasperi R, Rocher AB, Wang AC-J, Janssen WGM, Flores T, Perez GM, Schmeidler J, Dickstein DL, Hof PR, Elder GA (2009) Age-related vascular pathology in transgenic mice expressing presenilin 1-associated familial Alzheimer’s disease mutations. Am J Pathol. doi:10.3233/JAD-2009-1164

  • Giannakopoulos P, Bouras C, Kovari E, Shioi J, Tezapsidis N, Hof PR, Robakis NK (1997) Presenilin-1-immunoreactive neurons are preserved in late-onset Alzheimer’s disease. Am J Pathol 150:429–436

    CAS  PubMed  Google Scholar 

  • Giliberto L, Borghi R, Piccini A, Mangerini R, Sorbi S, Cirmena G, Garuti A, Ghetti B, Tagliavini F, Mughal MR, Mattson MP, Zhu X, Wang X, Guglielmotto M, Tamagno E, Tabaton M (2009) Mutant presenilin 1 increases the expression and activity of BACE1. J Biol Chem 284:9027–9038

    CAS  PubMed  Google Scholar 

  • Grilli M, Diodato E, Lozza G, Brusa R, Casarini M, Uberti D, Rozmahel R, Westaway D, St. George-Hyslop P, Memo M, Ongini E (2000) Presenilin-1 regulates the neuronal threshold to excitotoxicity both physiologically and pathologically. Proc Natl Acad Sci USA 97:12822–12827

    CAS  PubMed  Google Scholar 

  • Gu F, Zhu M, Shi J, Hu Y, Zhao Z (2008) Enhanced oxidative stress is an early event during development of Alzheimer-like pathologies in presenilin conditional knock-out mice. Neurosci Lett 440:44–48

    CAS  PubMed  Google Scholar 

  • Guo Q, Fu W, Sopher BL, Miller MW, Ware CB, Martin GM, Mattson MP (1999) Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat Med 5:101–106

    CAS  PubMed  Google Scholar 

  • Hass MR, Sato C, Kopan R, Zhao G (2009) Presenilin: RIP and beyond. Semin Cell Dev Biol 20:201–210

    CAS  PubMed  Google Scholar 

  • Haughey NJ, Liu D, Nath A, Borchard AC, Mattson MP (2002) Disruption of neurogenesis in the subventricular zone of adult mice, and in human cortical neuronal precursor cells in culture, by amyloid beta-peptide: implications for the pathogenesis of Alzheimer’s disease. Neuromolecular Med 1:125–135

    CAS  PubMed  Google Scholar 

  • Herreman A, Hartmann D, Annaert W, Saftig P, Craessaerts K, Serneels L, Umans L, Schrijvers V, Checler F, Vanderstichele H, Baekelandt V, Dressel R, Cupers P, Huylebroeck D, Zwijsen A, Van Leuven F, De Strooper B (1999) Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc Natl Acad Sci USA 96:11872–11877

    CAS  PubMed  Google Scholar 

  • Hof PR, Morrison JH (2004) The aging brain: morphomolecular senescence of cortical circuits. Trends Neurosci 27:607–613

    CAS  PubMed  Google Scholar 

  • Hof PR, Bussière T, Gold G, Kovari E, Giannakopoulos P, Bouras C, Perl DP, Morrison JH (2003) Stereologic evidence for persistence of viable neurons in layer II of the entorhinal cortex and the CA1 field in Alzheimer disease. J Neuropathol Exp Neurol 62:55–67

    PubMed  Google Scholar 

  • Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, Wright K, Saad I, Mueller R, Morgan D, Sanders S, Zehr C, O’Campo K, Hardy J, Prada CM, Eckman C, Younkin S, Hsiao K, Duff K (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4:97–100

    CAS  PubMed  Google Scholar 

  • Holcomb LA, Gordon MN, Jantzen P, Hsiao K, Duff K, Morgan D (1999) Behavioral changes in transgenic mice expressing both amyloid precursor protein and presenilin-1 mutations: lack of association with amyloid deposits. Behav Genet 29:177–185

    CAS  PubMed  Google Scholar 

  • Huang XG, Yee BK, Nag S, Chan ST, Tang F (2003) Behavioral and neurochemical characterization of transgenic mice carrying the human presenilin-1 gene with or without the leucine-to-proline mutation at codon 235. Exp Neurol 183:673–681

    CAS  PubMed  Google Scholar 

  • Hwang DY, Chae KR, Kang TS, Hwang JH, Lim CH, Kang HK, Goo JS, Lee MR, Lim HJ, Min SH, Cho JY, Hong JT, Song CW, Paik SG, Cho JS, Kim YK (2002) Alterations in behavior, amyloid beta-42, caspase-3, and Cox-2 in mutant PS2 transgenic mouse model of Alzheimer’s disease. FASEB J 16:805–813

    CAS  PubMed  Google Scholar 

  • Hyman BT, Van Horsen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225:1168–1170

    CAS  PubMed  Google Scholar 

  • Janicki SM, Monteiro MJ (1999) Presenilin overexpression arrests cells in the G1 phase of the cell cycle. Arrest potentiated by the Alzheimer’s disease PS2(N141I)mutant. Am J Pathol 155:135–144

    CAS  PubMed  Google Scholar 

  • Jankowsky JL, Slunt HH, Gonzales V, Jenkins NA, Copeland NG, Borchelt DR (2004) APP processing and amyloid deposition in mice haplo-insufficient for presenilin 1. Neurobiol Aging 25:885–892

    CAS  PubMed  Google Scholar 

  • Jankowsky JL, Younkin LH, Gonzales V, Fadale DJ, Slunt HH, Lester HA, Younkin SG, Borchelt DR (2007) Rodent Aβ modulates the solubility and distribution of amyloid deposits in transgenic mice. J Biol Chem 282:22707–22720

    CAS  PubMed  Google Scholar 

  • Janus C, D’Amelio S, Amitay O, Chishti MA, Strome R, Fraser P, Carlson GA, Roder JC, St. George-Hyslop P, Westaway D (2000) Spatial learning in transgenic mice expressing human presenilin 1 (PS1) transgenes. Neurobiol Aging 21:541–549

    CAS  PubMed  Google Scholar 

  • Jiang X, Zhang D, Shi J, Chen Y, Zhang P, Mei B (2009) Increased inflammatory response both in brain and in periphery in presenilins conditional double knock-out mice. J Alzheimer’s Dis. doi:10.3233/JAD-2009-1164

  • Jin K, Galvan V, Xie L, Mao XO, Gorostiza OF, Bredesen DE, Greenberg DA (2004a) Enhanced neurogenesis in Alzheimer’s disease transgenic (PDGF-APPSw, Ind) mice. Proc Natl Acad Sci USA 101:13363–13367

    CAS  PubMed  Google Scholar 

  • Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA (2004b) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA 101:343–347

    CAS  PubMed  Google Scholar 

  • Kadish I, Pradier L, van Groen T (2002) Transgenic mice expressing the human presenilin 1 gene demonstrate enhanced hippocampal reorganization following entorhinal cortex lesions. Brain Res Bull 57:587–594

    CAS  PubMed  Google Scholar 

  • Kassed CA, Butler TL, Navidomskis MT, Gordon MN, Morgan D, Pennypacker KR (2003) Mice expressing human mutant presenilin-1 exhibit decreased activation of NF-κB p50 in hippocampal neurons after injury. Mol Brain Res 110:152–157

    CAS  PubMed  Google Scholar 

  • Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495

    CAS  PubMed  Google Scholar 

  • Kempermann G, Brandon EP, Gage FH (1998) Environmental stimulation of 129/SvJ mice causes increased cell proliferation and neurogenesis in the adult dentate gyrus. Curr Biol 8:939–942

    CAS  PubMed  Google Scholar 

  • Khandelwal A, Chandu D, Roe CM, Kopan R, Quatrano RS (2007) Moonlighting activity of presenilin in plants is independent of gamma-secretase and evolutionarily conserved. Proc Natl Acad Sci USA 104:13337–13342

    CAS  PubMed  Google Scholar 

  • Kohler C, Ebert U, Baumann K, Schroder H (2005) Alzheimer’s disease-like neuropathology of gene-targeted APP-SLxPS1mut mice expressing the amyloid precursor protein at endogenous levels. Neurobiol Dis 20:528–540

    PubMed  Google Scholar 

  • LaFontaine MA, Mattson MP, Butterfield DA (2002) Oxidative stress in synaptosomal proteins from mutant presenilin-1 knock-in mice: implications for familial Alzheimer’s disease. Neurochem Res 27:417–421

    CAS  PubMed  Google Scholar 

  • Lalonde R, Qian S, Strazielle C (2003) Transgenic mice expressing the PS1–A246E mutation: effects on spatial learning, exploration, anxiety, and motor coordination. Behav Brain Res 138:71–79

    CAS  PubMed  Google Scholar 

  • Lamb BT, Bardel KA, Kulnane LS, Anderson JJ, Holtz G, Wagner SL, Sisodia SS, Hoeger EJ (1999) Amyloid production and deposition in mutant amyloid precursor protein and presenilin-1 yeast artificial chromosome transgenic mice. Nat Neurosci 2:695–697

    CAS  PubMed  Google Scholar 

  • Lazarov O, Peterson LD, Peterson DA, Sisodia SS (2006) Expression of a familial Alzheimer’s disease-linked presenilin-1 variant enhances perforant pathway lesion-induced neuronal loss in the entorhinal cortex. J Neurosci 26:429–434

    CAS  PubMed  Google Scholar 

  • Lazarov O, Morfini GA, Pigino G, Gadadhar A, Chen X, Robinson J, Ho H, Brady ST, Sisodia SS (2007) Impairments in fast axonal transport and motor neuron deficits in transgenic mice expressing familial Alzheimer’s disease-linked mutant presenilin 1. J Neurosci 27:7011–7020

    CAS  PubMed  Google Scholar 

  • Lee MK, Slunt HH, Martin LJ, Thinakaran G, Kim G, Gandy SE, Seeger M, Koo E, Price DL, Sisodia SS (1996) Expression of presenilin 1 and 2 (PS1 and PS2) in human and murine tissues. J Neurosci 16:7513–7525

    CAS  PubMed  Google Scholar 

  • Leutner S, Czech C, Schindowski K, Touchet N, Eckert A, Muller WE (2000) Reduced antioxidant enzyme activity in brains of mice transgenic for human presenilin-1 with single or multiple mutations. Neurosci Lett 292:87–90

    CAS  PubMed  Google Scholar 

  • Levitan D, Greenwald I (1995) Facilitation of lin-12-medlated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377:351

    CAS  PubMed  Google Scholar 

  • Levitan D, Doyle TG, Brousseau D, Lee MK, Thinakaran G, Slunt HH, Sisodia SS, Greenwald I (1996) Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proc Natl Acad Sci USA 93:14940–14944

    CAS  PubMed  Google Scholar 

  • Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491

    CAS  PubMed  Google Scholar 

  • Lopez-Toledano MA, Shelanski ML (2004) Neurogenic effect of beta-amyloid peptide in the development of neural stem cells. J Neurosci 24:5439–5444

    CAS  PubMed  Google Scholar 

  • Lopez-Toledano MA, Shelanski ML (2007) Increased neurogenesis in young transgenic mice overexpressing human APP(Sw, Ind). J Alzheimer’s Dis 12:229–240

    CAS  Google Scholar 

  • Marambaud P, Shioi J, Serban G, Georgakopoulos A, Sarner S, Nagy V, Baki L, Wen P, Efthimiopoulos S, Shao Z, Wisniewski T, Robakis NK (2002) A presenilin-1/gamma-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J 21:1948–1956

    CAS  PubMed  Google Scholar 

  • Marambaud P, Dreses-Werringloer U, Vingtdeux V (2009) Calcium signaling in neurodegeneration. Mol Neurodegen 4:20

    Google Scholar 

  • Martinez-Mir A, Canestro C, Gonzalez-Duarte R, Albalat R (2001) Characterization of the amphioxus presenilin gene in a high gene-density genomic region illustrates duplication during the vertebrate lineage. Gene 279:157–164

    CAS  PubMed  Google Scholar 

  • McGowan E, Sanders S, Iwatsubo T, Takeuchi A, Saido T, Zehr C, Yu X, Uljon S, Wang R, Mann D, Dickson D, Duff K (1999) Amyloid phenotype characterization of transgenic mice overexpressing both mutant amyloid precursor protein and mutant presenilin 1 transgenes. Neurobiol Dis 6:231–244

    CAS  PubMed  Google Scholar 

  • Mirnics K, Korade Z, Arion D, Lazarov O, Unger T, Macioce M, Sabatini M, Terrano D, Douglass KC, Schor NF, Sisodia SS (2005) Presenilin-1-dependent transcriptome changes. J Neurosci 25:1571–1578

    CAS  PubMed  Google Scholar 

  • Mohmmad Abdul H, Wenk GL, Gramling M, Hauss-Wegrzyniak B, Butterfield DA (2004) APP and PS-1 mutations induce brain oxidative stress independent of dietary cholesterol: implications for Alzheimer’s disease. Neurosci Lett 368:148–150

    CAS  PubMed  Google Scholar 

  • Morton RA, Kuenzi FM, Fitzjohn SM, Rosahl TW, Smith D, Zheng H, Shearman M, Collingridge GL, Seabrook GR (2002) Impairment in hippocampal long-term potentiation in mice under-expressing the Alzheimer’s disease related gene presenilin-1. Neurosci Lett 319:37–40

    CAS  PubMed  Google Scholar 

  • Nakano Y, Kondoh G, Kudo T, Imaizumi K, Kato M, Miyazaki JI, Tohyama M, Takeda J, Takeda M (1999) Accumulation of murine amyloidβ42 in a gene-dosage-dependent manner in PS1 ‘knock-in’ mice. Eur J Neurosci 11:2577–2581

    CAS  PubMed  Google Scholar 

  • Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26:10129–10140

    CAS  PubMed  Google Scholar 

  • Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421

    CAS  PubMed  Google Scholar 

  • Oyama F, Sawamura N, Kobayashi K, Morishima-Kawashima M, Kuramochi T, Ito M, Tomita T, Maruyama K, Saido TC, Iwatsubo T, Capell A, Walter J, Grunberg J, Ueyama Y, Haass C, Ihara Y (1998) Mutant presenilin 2 transgenic mouse: effect on an age-dependent increase of amyloid beta-protein 42 in the brain. J Neurochem 71:313–322

    Article  CAS  PubMed  Google Scholar 

  • Parent A, Linden DJ, Sisodia SS, Borchelt DR (1999) Synaptic transmission and hippocampal long-term potentiation in transgenic mice expressing FAD-linked presenilin 1. Neurobiol Dis 6:56–62

    CAS  PubMed  Google Scholar 

  • Pigino G, Morfini G, Pelsman A, Mattson MP, Brady ST, Busciglio J (2003) Alzheimer’s presenilin 1 mutations impair kinesin-based axonal transport. J Neurosci 23:4499–4508

    CAS  PubMed  Google Scholar 

  • Pimplikar SW (2009) Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Biochem Cell Biol 41:1261–1268

    CAS  PubMed  Google Scholar 

  • Priller C, Dewachter I, Vassallo N, Paluch S, Pace C, Kretzschmar HA, Van Leuven F, Herms J (2007) Mutant presenilin 1 alters synaptic transmission in cultured hippocampal neurons. J Biol Chem 282:1119–1127

    CAS  PubMed  Google Scholar 

  • Qian S, Jiang P, Guan XM, Singh G, Trumbauer ME, Yu H, Chen HY, Van de Ploeg LH, Zheng H (1998) Mutant human presenilin 1 protects presenilin 1 null mouse against embryonic lethality and elevates Aβ1–42/43 expression. Neuron 20:611–617

    CAS  PubMed  Google Scholar 

  • Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T, Mar L, Sorbi S, Nacmias B, Piacentinl S, Amaducci L, Chumakov I, Cohen D, Lannfelt L, Fraser PE, Rommens JM, St. George-Hyslop PH (1995) Familial Alzheimer’s disease In kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376:775–778

    CAS  PubMed  Google Scholar 

  • Rutten BP, Van der Kolk NM, Schafer S, van Zandvoort MA, Bayer TA, Steinbusch HW, Schmitz C (2005) Age-related loss of synaptophysin immunoreactive presynaptic boutons within the hippocampus of APP751SL, PS1M146L, and APP751SL/PS1M146L transgenic mice. Am J Pathol 167:161–173

    CAS  PubMed  Google Scholar 

  • Sadowski M, Pankiewicz J, Scholtzova H, Ji Y, Quartermain D, Jensen CH, Duff K, Nixon RA, Gruen RJ, Wisniewski T (2004) Amyloid-beta deposition is associated with decreased hippocampal glucose metabolism and spatial memory impairment in APP/PS1 mice. J Neuropathol Exp Neurol 63:418–428

    CAS  PubMed  Google Scholar 

  • Saura CA, Choi SY, Beglopoulos V, Malkani S, Zhang D, Shankaranarayana Rao BS, Chattarji S, Kelleher RJ 3rd, Kandel ER, Duff K, Kirkwood A, Shen J (2004) Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42:23–36

    CAS  PubMed  Google Scholar 

  • Saura CA, Chen G, Malkani S, Choi SY, Takahashi RH, Zhang D, Gouras GK, Kirkwood A, Morris RG, Shen J (2005) Conditional inactivation of presenilin 1 prevents amyloid accumulation and temporarily rescues contextual and spatial working memory impairments in amyloid precursor protein transgenic mice. J Neurosci 25:6755–6764

    CAS  PubMed  Google Scholar 

  • Sawamura N, Morishima-Kawashima M, Waki H, Kobayashi K, Kuramochi T, Frosch MP, Ding K, Ito M, Kim TW, Tanzi RE, Oyama F, Tabira T, Ando S, Ihara Y (2000) Mutant presenilin 2 transgenic mice. A large increase in the levels of Aβ 42 is presumably associated with the low density membrane domain that contains decreased levels of glycerophospholipids and sphingomyelin. J Biol Chem 275:27901–27908

    CAS  PubMed  Google Scholar 

  • Schmitz C, Rutten BP, Pielen A, Schafer S, Wirths O, Tremp G, Czech C, Blanchard V, Multhaup G, Rezaie P, Korr H, Steinbusch HW, Pradier L, Bayer TA (2004) Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer’s disease. Am J Pathol 164:1495–1502

    PubMed  Google Scholar 

  • Schneider I, Reverse D, Dewachter I, Ris L, Caluwaerts N, Kuiperi C, Gilis M, Geerts H, Kretzschmar H, Godaux E, Moechars D, Van Leuven F, Herms J (2001) Mutant presenilins disturb neuronal calcium homeostasis in the brain of transgenic mice, decreasing the threshold for excitotoxicity and facilitating long-term potentiation. J Biol Chem 276:11539–11544

    CAS  PubMed  Google Scholar 

  • Schuessel K, Frey C, Jourdan C, Keil U, Weber CC, Muller-Spahn F, Muller WE, Eckert A (2006) Aging sensitizes toward ROS formation and lipid peroxidation in PS1M146L transgenic mice. Free Rad Biol Med 40:850–862

    CAS  PubMed  Google Scholar 

  • Seidner GA, Ye Y, Faraday MM, Alvord WG, Fortini ME (2006) Modeling clinically heterogeneous presenilin mutations with transgenic Drosophila. Curr Biol 16:1026–1033

    CAS  PubMed  Google Scholar 

  • Shen J, Kelleher RJ 3rd (2007) The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc Natl Acad Sci USA 104:403–409

    CAS  PubMed  Google Scholar 

  • Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S (1997) Skeletal and CNS defects in presenilin-1-deficient mice. Cell 89:629–639

    CAS  PubMed  Google Scholar 

  • Sherrington R, Rogaev EI, Llang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin J-F, Bruni AC, Montesil MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HAR, Haines JL, Pericak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St. George Hyslop PH (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760

    CAS  PubMed  Google Scholar 

  • Shioi J, Georgakopoulos A, Mehta P, Kouchi Z, Litterst CM, Baki L, Robakis NK (2007) FAD mutants unable to increase neurotoxic Aβ42 suggest that mutation effects on neurodegeneration may be independent of effects on Aβ. J Neurochem 101:674–681

    CAS  PubMed  Google Scholar 

  • Silveyra MX, Evin G, Montenegro MF, Vidal CJ, Martinez S, Culvenor JG, Saez-Valero J (2008) Presenilin 1 interacts with acetylcholinesterase and alters its enzymatic activity and glycosylation. Mol Cell Biol 28:2908–2919

    CAS  PubMed  Google Scholar 

  • Siman R, Reaume AG, Savage MJ, Trusko S, Lin YG, Scott RW, Flood DG (2000) Presenilin-1 P264L knock-in mutation: differential effects on Aβ production, amyloid deposition, and neuronal vulnerability. J Neurosci 20:8717–8726

    CAS  PubMed  Google Scholar 

  • Small DH (2009) Dysregulation of calcium homeostasis in Alzheimer’s disease. Neurochem Res 34:1824–1829

    CAS  PubMed  Google Scholar 

  • Song W, Nadeau P, Yuan M, Yang X, Shen J, Yankner BA (1999) Proteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations. Proc Natl Acad Sci USA 96:6959–6963

    CAS  PubMed  Google Scholar 

  • Steiner H, Fluhrer R, Haass C (2008) Intramembrane proteolysis by gamma-secretase. J Biol Chem 283:29627–29631

    CAS  PubMed  Google Scholar 

  • Tamboli IY, Prager K, Thal DR, Thelen KM, Dewachter I, Pietrzik CU, St. George-Hyslop P, Sisodia SS, De Strooper B, Heneka MT, Filippov MA, Muller U, van Leuven F, Lutjohann D, Walter J (2008) Loss of gamma-secretase function impairs endocytosis of lipoprotein particles and membrane cholesterol homeostasis. J Neurosci 28:12097–12106

    CAS  PubMed  Google Scholar 

  • Tanemura K, Chui DH, Fukuda T, Murayama M, Park JM, Akagi T, Tatebayashi Y, Miyasaka T, Kimura T, Hashikawa T, Nakano Y, Kudo T, Takeda M, Takashima A (2006) Formation of tau inclusions in knock-in mice with familial Alzheimer disease (FAD) mutation of presenilin 1 (PS1). J Biol Chem 281:5037–5041

    CAS  PubMed  Google Scholar 

  • Tesco G, Kim TW, Diehlmann A, Beyreuther K, Tanzi RE (1998) Abrogation of the presenilin 1/beta-catenin interaction and preservation of the heterodimeric presenilin 1 complex following caspase activation. J Biol Chem 273:33909–33914

    CAS  PubMed  Google Scholar 

  • Thal DR, Holzer M, Rub U, Waldmann G, Gunzel S, Zedlick D, Schober R (2000) Alzheimer-related tau-pathology in the perforant path target zone and in the hippocampal stratum oriens and radiatum correlates with onset and degree of dementia. Exp Neurol 163:98–110

    CAS  PubMed  Google Scholar 

  • Vaucher E, Fluit P, Chishti MA, Westaway D, Mount HT, Kar S (2002) Object recognition memory and cholinergic parameters in mice expressing human presenilin 1 transgenes. Exp Neurol 175:398–406

    CAS  PubMed  Google Scholar 

  • Vetrivel KS, Zhang YW, Xu H, Thinakaran G (2006) Pathological and physiological functions of presenilins. Mol Neurodegen 1:4

    Google Scholar 

  • Wang R, Dineley KT, Sweatt JD, Zheng H (2004) Presenilin 1 familial Alzheimer’s disease mutation leads to defective associative learning and impaired adult neurogenesis. Neuroscience 126:305–312

    CAS  PubMed  Google Scholar 

  • Wang R, Wang B, He W, Zheng H (2006) Wild-type presenilin 1 protects against Alzheimer disease mutation-induced amyloid pathology. J Biol Chem 281:15330–15336

    CAS  PubMed  Google Scholar 

  • Wang Y, Greig NH, Yu QS, Mattson MP (2009) Presenilin-1 mutation impairs cholinergic modulation of synaptic plasticity and suppresses NMDA currents in hippocampus slices. Neurobiol Aging 30:1061–1068

    CAS  PubMed  Google Scholar 

  • Weggen S, Diehlmann A, Buslei R, Beyreuther K, Bayer TA (1998) Prominent expression of presenilin-1 in senile plaques and reactive astrocytes in Alzheimer’s disease brain. Neuroreport 9:3279–3283

    CAS  PubMed  Google Scholar 

  • Wen PH, Friedrich VL Jr, Shioi J, Robakis NK, Elder GA (2002a) Presenilin-1 is expressed in neural progenitor cells in the hippocampus of adult mice. Neurosci Lett 318:53–56

    CAS  PubMed  Google Scholar 

  • Wen PH, Shao X, Shao Z, Hof PR, Wisniewski T, Kelley K, Friedrich VL Jr, Ho L, Pasinetti GM, Shioi J, Robakis NK, Elder GA (2002b) Overexpression of wild type but not an FAD mutant presenilin-1 promotes neurogenesis in the hippocampus of adult mice. Neurobiol Dis 10:8–19

    CAS  PubMed  Google Scholar 

  • Wen PH, Hof PR, Chen X, Gluck K, Austin G, Younkin SG, Younkin LH, DeGasperi R, Gama Sosa MA, Robakis NK, Haroutunian V, Elder GA (2004) The presenilin-1 familial Alzheimer disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Exp Neurol 188:224–237

    CAS  PubMed  Google Scholar 

  • Wen PH, De Gasperi R, Sosa MA, Rocher AB, Friedrich VL Jr, Hof PR, Elder GA (2005) Selective expression of presenilin 1 in neural progenitor cells rescues the cerebral hemorrhages and cortical lamination defects in presenilin 1-null mutant mice. Development 132:3873–3883

    CAS  PubMed  Google Scholar 

  • Wolfe MS (2007) When loss is gain: reduced presenilin proteolytic function leads to increased Abeta42/Abeta40. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Rep 8:136–140

    CAS  PubMed  Google Scholar 

  • Wolfe MS (2009) Gamma-Secretase in biology and medicine. Semin Cell Dev Biol 20:219–224

    CAS  PubMed  Google Scholar 

  • Wong PC, Zheng H, Chen H, Becher MW, Sirinathsinghji DJ, Trumbauer ME, Chen HY, Price DL, Van der Ploeg LH, Sisodia SS (1997) Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature 387:288–292

    CAS  PubMed  Google Scholar 

  • Wu P, Shen Q, Dong S, Xu Z, Tsien JZ, Hu Y (2008) Calorie restriction ameliorates neurodegenerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice. Neurobiol Aging 29:1502–1511

    CAS  PubMed  Google Scholar 

  • Yang X, Yang Y, Luo Y, Li G, Wang J, Yang ES (2009) Hyperphosphorylation and accumulation of neurofilament proteins in transgenic mice with Alzheimer presenilin 1 mutation. Cell Mol Neurobiol 29:497–501

    CAS  PubMed  Google Scholar 

  • Yu G, Chen F, Nishimura M, Steiner H, Tandon A, Kawarai T, Arawaka S, Supala A, Song YQ, Rogaeva E, Holmes E, Zhang DM, Milman P, Fraser PE, Haass C, George-Hyslop PS (2000) Mutation of conserved aspartates affects maturation of both aspartate mutant and endogenous presenilin 1 and presenilin 2 complexes. J Biol Chem 275:27348–27353

    CAS  PubMed  Google Scholar 

  • Yu H, Saura CA, Choi SY, Sun LD, Yang X, Handler M, Kawarabayashi T, Younkin L, Fedeles B, Wilson MA, Younkin S, Kandel ER, Kirkwood A, Shen J (2001) APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Neuron 31:713–726

    CAS  PubMed  Google Scholar 

  • Yuk DY, Lee YK, Nam SY, Yun YW, Hwang DY, Choi DY, Oh KW, Hong JT (2009) Reduced anxiety in the mice expressing mutant (N141I) presenilin 2. J Neurosci Res 87:522–531

    CAS  PubMed  Google Scholar 

  • Zaman SH, Parent A, Laskey A, Lee MK, Borchelt DR, Sisodia SS, Malinow R (2000) Enhanced synaptic potentiation in transgenic mice expressing presenilin 1 familial Alzheimer’s disease mutation is normalized with a benzodiazepine. Neurobiol Dis 7:54–63

    CAS  PubMed  Google Scholar 

  • Zhang C, McNeil E, Dressler L, Siman R (2007) Long-lasting impairment in hippocampal neurogenesis associated with amyloid deposition in a knock-in mouse model of familial Alzheimer’s disease. Exp Neurol 204:77–87

    CAS  PubMed  Google Scholar 

  • Zhang C, Wu B, Beglopoulos V, Wines-Samuelson M, Zhang D, Dragatsis I, Sudhof TC, Shen J (2009) Presenilins are essential for regulating neurotransmitter release. Nature 460:632–636

    CAS  PubMed  Google Scholar 

  • Zhu M, Gu F, Shi J, Hu J, Hu Y, Zhao Z (2008) Increased oxidative stress and astrogliosis responses in conditional double-knockout mice of Alzheimer-like presenilin-1 and presenilin-2. Free Rad Biol Med 45:1493–1499

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratories has been supported by the National Institute on Aging (grants AG02219, AG05138, AG20139, and AG029361), the Alzheimer’s Association (IIRG-07-57318) and a Merit Award from the Department of Veterans Affairs (1I01BX000342).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory A. Elder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elder, G.A., Gama Sosa, M.A., De Gasperi, R. et al. Presenilin transgenic mice as models of Alzheimer’s disease. Brain Struct Funct 214, 127–143 (2010). https://doi.org/10.1007/s00429-009-0227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-009-0227-3

Keywords

Navigation