Advertisement

Brain Structure and Function

, 213:501 | Cite as

Brain volumes and Val66Met polymorphism of the BDNF gene: local or global effects?

  • Roberto ToroEmail author
  • Marie Chupin
  • Line Garnero
  • Gabriel Leonard
  • Michel Perron
  • Bruce Pike
  • Alain Pitiot
  • Louis Richer
  • Suzanne Veillette
  • Zdenka Pausova
  • Tomáš PausEmail author
Human Brain: Structure, Function & Behavior

Abstract

A common Single-Nucleotide Polymorphism in the Brain-Derived Neurotrophic Factor (BDNF) gene coding the Val66Met substitution in the pro-BDNF protein has been associated with a number of behavioural and neuroanatomical phenotypes; the latter include, for example, regional differences in volumes of the hippocampus and prefrontal grey matter. Here, we show that the observed regional differences may not stem from a localised effect of this gene. Our analysis of regional brain volume in a cohort of 331 adolescents indicates that the Val66Met substitution has a global effect on brain volume, and that the observed local differences are to be expected if brain allometry—the covariance pattern of regional brain volumes—is taken into account.

Keywords

White Matter Brain Size White Matter Volume Large Brain BDNF Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The Saguenay Youth Study project is funded by the Canadian Institutes of Health Research, Heart and Stroke Foundation of Quebec, and the Canadian Foundation for Innovation. We thank Pierre-Yves Hervé and Jamila Andoh for their comments on the manuscript, and the following individuals for their contribution in designing the protocol, acquiring and analysing the data: MR team (Dr. Michel Bérubé, Sylvie Masson, Suzanne Castonguay, Julien Grandisson, Marie-Josée Morin) and the ÉCOBES team (Nadine Arbour, Marie-Ève Bouchard, Annie Houde, Dr. Luc Laberge). We thank Dr. Jean Mathieu for the medical follow-up of subjects in whom we detected any medically relevant abnormalities.

References

  1. Bueller JA, Aftab M, Sen S, Gomez-Hassan D, Burmeister M, Zubieta JK (2006) BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biol Psychiatry 59:812–815. doi: 10.1016/j.biopsych.2005.09.022 CrossRefPubMedGoogle Scholar
  2. Carper RA, Mosesc P, Tiguea ZD, Courchesne E (2002) Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage 16(4):1038–1051. doi: 10.1006/nimg.2002.1099 CrossRefPubMedGoogle Scholar
  3. Chen ZY, Patel PD, Sant G, Meng CX, Teng K, Hempstead BL, Lee FS (2004) Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J Neurosci 24(18):4401–4411. doi: 10.1523/JNEUROSCI.0348-04.2004 CrossRefPubMedGoogle Scholar
  4. Chupin M, Hammers A, Bardinet E, Colliot O, Liu RS, Duncan JS, Garnero L, Lemieux L (2007) Fully automatic segmentation of the hippocampus and the amygdala from MRI using hybrid prior knowledge. MICCAI 4791:875–882Google Scholar
  5. Cocosco CA, Zijdenbos AP, Evans AC (2003) A fully automatic and robust MRI tissue classification method. Med Image Anal 7:513–527. doi: 10.1016/S1361-8415(03)00037-9 CrossRefPubMedGoogle Scholar
  6. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205. doi: 10.1097/00004728-199403000-00005 CrossRefPubMedGoogle Scholar
  7. Collins DL, Holmes CJ, Peters TM, Evans AC (1995) Automatic 3D model-based neuroanatomical segmentation. Hum Brain Mapp 3:190–208. doi: 10.1002/hbm.460030304 CrossRefGoogle Scholar
  8. Collins DL, Zijdenbos AP, Baare WFC, Evans AC (1999) ANIMAL + INSECT: improved cortical structure segmentation. In: Information processing in medical imaging. Proceedings of the 16th international conference, IPMI ’99 (Lecture Notes in Computer Science), vol 1613. p 210Google Scholar
  9. Egan M, Kojima M, Callicott J, Goldberg T, Kolachana B, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112(2):257–269. doi: 10.1016/S0092-8674(03)00035-7 CrossRefPubMedGoogle Scholar
  10. Finlay BL, Darlington RB, Nicastro N (2001) Developmental structure in brain evolution. Behav Brain Sci 24(2):264–278Google Scholar
  11. Frodl T, Schüle C, Schmitt G, Born C, Baghai T, Zill P, Bottlender R, Rupprecht R, Bondy B, Reiser M, Möller HJ, Meisenzahl EM (2007) Association of the brain-derived neurotrophic factor Val66Met polymorphism with reduced hippocampal volume in major depression. Arch Gen Psychiatry 64:410–416. doi: 10.1001/archpsyc.64.4.410 CrossRefPubMedGoogle Scholar
  12. Giedd JN (2008) The teen brain: insights from neuroimaging. J Adolesc Health 42(4):335–343. doi: 10.1016/j.jadohealth.2008.01.007 CrossRefPubMedGoogle Scholar
  13. Herbert MR, Ziegler DA, Makris N, Filipek PA, Kemper TL, Normandin JJ, Sanders HA, Kennedy DN, Caviness VS Jr (2004) Localization of white matter volume increase in autism and developmental language disorder. Ann Neurol 55(4):530–540. doi: 10.1002/ana.20032 CrossRefPubMedGoogle Scholar
  14. Jerison HJ (1973) Evolution of the brain and intelligence. Academic Press, New YorkGoogle Scholar
  15. Jolicoeur P (1963) The multivariate generalization of the allometry equation. Biometrics 19:497–499. doi: 10.2307/2527939 CrossRefGoogle Scholar
  16. Krzanowski WJ (1979) Between-groups comparison of principal components. J Am Stat Assoc 74(367):703–707CrossRefGoogle Scholar
  17. Neves-Pereira M, Mundo E, Muglia P, King N, Macciardi F, Kennedy J (2002) The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am J Hum Genet 71(3):651–655. doi: 10.1086/342288 CrossRefPubMedGoogle Scholar
  18. Pausova Z, Paus T, Abrahamowicz M, Almerigi J, Arbour N, Bernard M, Gaudet D, Hanzalek P, Hamet P, Evans AC, Kramer M, Laberge L, Leal SM, Leonard G, Lerner J, Lerner RM, Mathieu J, Perron M, Pike B, Pitiot A, Richer L, Séguin JR, Syme C, Toro R, Tremblay RE, Veillette S, Watkins K (2007) Genes, maternal smoking and the offspring brain and body during adolescence: design of the Saguenay Youth Study. Hum Brain Mapp 28:502–518. doi: 10.1002/hbm.20402 CrossRefPubMedGoogle Scholar
  19. Perrin JS, Hervé PY, Leonard G, Perron M, Pike GB, Pitiot A, Richer L, Veillette S, Pausova Z, Paus T (2008) Growth of white matter in the adolescent brain: role of testosterone and androgen receptor. J Neurosci 28(38):9519–9524. doi: 10.1523/JNEUROSCI.1212-08.2008 CrossRefPubMedGoogle Scholar
  20. Pezawas L, Verchinsky BA, Mattay VS, Callicott JH, Kolachana BS, Straub RE, Egan MF, Meyer-Lindenberg A, Weinberger DR (2004) The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J Neurosci 24:10099–10102. doi: 10.1523/JNEUROSCI.2680-04.2004 CrossRefPubMedGoogle Scholar
  21. Pitiot A, Guimond A (2008) Geometrical regularisation of displacement fields for histological image registration. Med Image Anal 12(1):16–25. doi: 10.1016/j.media.2007.06.007 CrossRefPubMedGoogle Scholar
  22. Sen S, Nesse RM, Stoltenberg SF, Li S, Gleiberman L, Chakravarti A, Weder AB, Burmeister M (2003) A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology 28(2):397–401. doi: 10.1038/sj.npp.1300053 CrossRefPubMedGoogle Scholar
  23. Sklar P, Gabriel SB, McInnis MG, Bennett P, Lim YM, Tsan G, Schaffner S, Kirov G, Jones I, Owen M, Craddock N, DePaulo JR, Lander ES (2002) Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Brain-derived neutrophic factor. Mol Psychiatry 7(6):579–593. doi: 10.1038/sj.mp.4001058 CrossRefPubMedGoogle Scholar
  24. Sled JG, Zijdenbos AP, Evans AC (1998) A non-parametric method for automatic correction of intensity non-uniformity in MRI data. IEEE Trans Med Imag 17:87–97. doi: 10.1109/42.668698 CrossRefGoogle Scholar
  25. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155. doi: 10.1002/hbm.10062 CrossRefPubMedGoogle Scholar
  26. Toro R, Perron M, Pike B, Richer L, Veillette S, Pausova Z, Paus T (2008) Brain size and folding of the human cerebral cortex. Cereb Cortex 18(10):2352–2357. doi: 10.1093/cercor/bhm261 CrossRefPubMedGoogle Scholar
  27. Zhang K, Sejnowski TJ (2000) A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci USA 97(10):5621–5626. doi: 10.1073/pnas.090504197 CrossRefPubMedGoogle Scholar
  28. Zijdenbos AP, Forghani R, Evans AC (2002) Automatic ‘pipeline’ analysis of 3D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imag 21:1280–1291. doi: 10.1109/TMI.2002.806283 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Roberto Toro
    • 1
    • 2
    Email author
  • Marie Chupin
    • 3
  • Line Garnero
    • 3
  • Gabriel Leonard
    • 4
  • Michel Perron
    • 5
    • 7
  • Bruce Pike
    • 4
  • Alain Pitiot
    • 1
  • Louis Richer
    • 6
  • Suzanne Veillette
    • 5
    • 7
  • Zdenka Pausova
    • 1
    • 7
  • Tomáš Paus
    • 1
    • 4
    Email author
  1. 1.Brain and Body CentreUniversity of NottinghamNottinghamUK
  2. 2.Human Genetics and Cognitive FunctionsInstitut PasteurParisFrance
  3. 3.Cognitive Neuroscience and Brain Imaging LabCNRS UPR640, UPMCParisFrance
  4. 4.Montreal Neurological InstituteMcGill UniversityMontrealCanada
  5. 5.CEGEP JonquiereJonquiereCanada
  6. 6.University of Quebec in ChicoutimiChicoutimiCanada
  7. 7.University of MontrealMontrealCanada

Personalised recommendations