Skip to main content
Log in

Branching of individual somatosensory cerebropontine axons in rat: evidence of divergence

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The cerebral cortex conveys major input to the granule cell layer of the cerebellar hemispheres by way of the pontine nuclei. Cerebrocortical projections terminate in multiple, widely distributed clusters in the pontine nuclei. This clustered organization is thought to provide the transition between the different organizational principles of the cerebrum and cerebellum, and indicates that parallel processing occurs at multiple sites in the pontine nuclei. At a cellular level, however, it is unknown whether individual cerebropontine neurons target pontocerebellar cells located in different clusters or not. We have employed anterograde axonal tracing and 3D computerized reconstruction techniques to characterize the branching pattern and morphology of individual cerebropontine axons from the primary somatosensory cortex (SI). Our findings show that 43% of the cerebrobulbar fibers arising from SI whisker representations provide two or three fibers entering the pontine nuclei, whereas 39% have only one fiber, and the remaining 18% do not project to the pontine nuclei. Thus, it appears that a majority of cerebropontine axons originating in SI whisker representations diverge to contact multiple, separated pontocerebellar cells. Further, 84% of the somatosensory cerebropontine fibers are collateral branches from cerebrobulbar and/or cerebrospinal parent fibers, while 16% are direct cerebropontine projections without a further descending projection. A range of thicknesses of the fibers entering the pontine nuclei were observed, with collaterals of corticobulbar fibers having the smallest diameter. Taken together, these findings may be related to previously described separate cerebropontine transmission lines with different properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen GI, Korn H, Oshima T (1969) Monosynaptic pyramidal activation of pontine nuclei cells projecting to the cerebellum. Brain Res 15:272–275

    Article  PubMed  CAS  Google Scholar 

  • Allen GI, Korn H, Oshima T, Toyama K (1975) The mode of synaptic linkage in the cerebro-ponto-cerebellar pathway of the cat. II. Responses of single cells in the pontine nuclei. Exp Brain Res 24:15–36

    PubMed  CAS  Google Scholar 

  • Bjaalie JG, Leergaard TB (2000) Functions of the pontine nuclei in cerebro-cerebellar communication. Trends Neurosci 23:152–153

    Article  PubMed  CAS  Google Scholar 

  • Bjaalie JG, Leergaard TB (2006) Three-dimensional computerized reconstruction from serial sections: cell populations, regions, and whole brain. In: Zaborszky L, Wouterlood FG, Lanciego JL (eds) Neuroanatomical tract tracing: molecules, neurons, and systems. Springer Science+Business Media, New York, pp 530–565

    Chapter  Google Scholar 

  • Bjaalie JG, Leergaard TB, Lillehaug S, Odeh F, Moene IA, Kjode JO, Darin D (2005) Database and tools for analysis of topographic organization and map transformations in major projection systems of the brain. Neuroscience 136:681–695

    Article  PubMed  CAS  Google Scholar 

  • Bower JM, Kassel J (1990) Variability in tactile projection patterns to cerebellar folia crus IIA of the Norway rat. J Comp Neurol 302:768–778

    Article  PubMed  CAS  Google Scholar 

  • Bower JM, Beermann DH, Gibson JM, Shambes GM, Welker W (1981) Principles of organization of a cerebro-cerebellar circuit. Micromapping the projections from cerebral (SI) to cerebellar (granule cell layer) tactile areas of rats. Brain Behav Evol 18:1–18

    PubMed  CAS  Google Scholar 

  • Brevik A, Leergaard TB, Svanevik M, Bjaalie JG (2001) Three-dimensional computerised atlas of the rat brain stem precerebellar system: approaches for mapping, visualization, and comparison of spatial distribution data. Anat Embryol 204:319–332

    Article  PubMed  CAS  Google Scholar 

  • Brodal P (1982) The cerebropontocerebellar pathway: salient features of its organization. In: Chan-Palay V, Palay S (eds) The cerebellum: new vistas. Exp Brain Res, suppl 6. Springer, Berlin, pp 108–132

    Google Scholar 

  • Brodal P, Bjaalie JG (1992) Organization of the pontine nuclei. Neurosci Res 13:83–118

    Article  PubMed  CAS  Google Scholar 

  • Brodal P, Bjaalie JG (1997) Salient anatomic features of the cortico-ponto-cerebellar pathway. Prog Brain Res 114:227–249

    PubMed  CAS  Google Scholar 

  • Brown LL (1992) Somatotopic organization in rat striatum: evidence for a combinational map. Proc Natl Acad Sci USA 89:7403–7407

    Article  PubMed  CAS  Google Scholar 

  • Chapin JK, Lin CS (1984) Mapping the body representation in the SI cortex of anesthetized and awake rats. J Comp Neurol 229:199–213

    Article  PubMed  CAS  Google Scholar 

  • Endo K, Araki T, Yagi N (1973) The distribution and pattern of axon branching of pyramidal tract cells. Brain Res 57:484–491

    Article  PubMed  CAS  Google Scholar 

  • Fabri M, Burton H (1991) Topography of connections between primary somatosensory cortex and posterior complex in rat: a multiple fluorescent tracer study. Brain Res 538:351–357

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254

    Article  PubMed  CAS  Google Scholar 

  • Hartmann MJ, Bower JM (2001) Tactile responses in the granule cell layer of cerebellar folium crus IIa of freely behaving rats. J Neurosci 21:3549–3563

    PubMed  CAS  Google Scholar 

  • Hoffer ZS, Arantes HB, Roth RL, Alloway KD (2005) Functional circuits mediating sensorimotor integration: quantitative comparisons of projections from rodent barrel cortex to primary motor cortex, neostriatum, superior colliculus, and the pons. J Comp Neurol 488:82–100

    Article  PubMed  Google Scholar 

  • Holländer H, Brodal P, Walberg F (1968) Electronmicroscopic observations on the structure of the pontine nuclei and the mode of termination of the corticopontine fibres. An experimental study in the cat. Exp Brain Res 7:95–110

    Google Scholar 

  • Houk JC, Mugnaini E (2003) Cerebellum. In: Squire LR, Bloom FE, McConnell SK, Roberts JL, Spitzer NC, Zigmond MJ (eds) Fundamental neuroscience. Academic, San Diego, pp 841–872

    Google Scholar 

  • Ito M (2000) Mechanisms of motor learning in the cerebellum. Brain Res 886:237–245

    Article  PubMed  CAS  Google Scholar 

  • Ito M (2005) Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res 148:95–109

    Article  PubMed  Google Scholar 

  • Lanciego JL, Wouterlood FG (1994) Dual anterograde axonal tracing with Phaseolus vulgaris-leucoagglutinin (PHA-L) and biotinylated dextran amine (BDA). Neuroscience Protocols 94-050-06-01-13

  • Leergaard TB (2003) Clustered and laminar topographic patterns in rat cerebro-pontine pathways. Anat Embryol 206:149–162

    PubMed  Google Scholar 

  • Leergaard TB, Alloway KD, Mutic JJ, Bjaalie JG (2000a) Three-dimensional topography of corticopontine projections from rat barrel cortex: correlations with corticostriatal organization. J Neurosci 20:8474–8484

    PubMed  CAS  Google Scholar 

  • Leergaard TB, Lyngstad KA, Thompson JH, Taeymans S, Vos BP, De Schutter E, Bower JM, Bjaalie JG (2000b) Rat somatosensory cerebropontocerebellar pathways: spatial relationships of the somatotopic map of the primary somatosensory cortex are preserved in a three-dimensional clustered pontine map. J Comp Neurol 422:246–266

    Article  PubMed  CAS  Google Scholar 

  • Leergaard TB, Alloway KD, Pham TA, Bolstad I, Hoffer ZS, Pettersen C, Bjaalie JG (2004) Three-dimensional topography of corticopontine projections from rat sensorimotor cortex: comparisons with corticostriatal projections reveal diverse integrative organization. J Comp Neurol 478:306–322

    Article  PubMed  Google Scholar 

  • Leergaard TB, Lillehaug S, De Schutter E, Bower JM, Bjaalie JG (2006) Topographical organization of pathways from somatosensory cortex through the pontine nuclei to tactile regions of the rat cerebellar hemispheres. Eur J Neurosci 24:2801–2812

    Article  PubMed  Google Scholar 

  • Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15:1835–1853

    PubMed  CAS  Google Scholar 

  • Malach R (1994) Cortical columns as devices for maximizing neuronal diversity. Trends Neurosci 17:101–104

    Article  PubMed  CAS  Google Scholar 

  • Mihailoff GA, McArdle CB, Adams CE (1981) The cytoarchitecture, cytology, and synaptic organization of the basilar pontine nuclei in the rat. I. Nissl and Golgi studies. J Comp Neurol 195:181–201

    Article  PubMed  CAS  Google Scholar 

  • Möck M, Schwarz C, Thier P (1997) Electrophysiological properties of rat pontine nuclei neurons in vitro II. Postsynaptic potentials. J Neurophysiol 78:3338–3350

    PubMed  Google Scholar 

  • Moene IA, Subramaniam S, Darin D, Leergaard TB, Bjaalie JG (2007) Towards a workbench for rodent brain image data: systems architecture and design. Neuroinformatics 5:35–58

    PubMed  Google Scholar 

  • Odeh F, Ackerley R, Bjaalie JG, Apps R (2005) Pontine maps linking somatosensory and cerebellar cortices are in register with climbing fiber somatotopy. J Neurosci 25:5680–5690

    Article  PubMed  CAS  Google Scholar 

  • Oshima T (1979) The microphysiology of pontine nulei in the cat concerning the concept of internal feedback. In: Massion J, Sasaki K (eds) Cerebro-cerebellar interactions. Elsevier, Amsterdam, pp 125–139

    Google Scholar 

  • Palomero-Gallagher N, Zilles K (2004) Isocortex. In: Paxinos G (ed) The rat nervous system. Elsevier Academic Press, San Diego, pp 729–757

    Google Scholar 

  • Pijpers A, Ruigrok TJ (2006) Organization of pontocerebellar projections to identified climbing fiber zones in the rat. J Comp Neurol 496:513–528

    Article  PubMed  Google Scholar 

  • Ramón y Cajal S (1952) Histologie du Système Nerveux d l’Homme et des Vertébrés. Instituto Ramón y Cajal, Madrid

  • Reiner A, Veenman CL, Medina L, Jiao Y, Del Mar N, Honig MG (2000) Pathway tracing using biotinylated dextran amines. J Neurosci Methods 103:23–37

    Article  PubMed  CAS  Google Scholar 

  • Rüegg DG, Sequin JJ, Wiesendanger M (1977) Effects of electrical stimulation of somatosensory and motor areas of the cerebral cortex on neurons of the pontine nuclei in squirrel monkeys. Neuroscience 2:923–927

    Article  Google Scholar 

  • Schmahmann JD (1997) Rediscovery of an early concept. Int Rev Neurobiol 41:3–27

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–378

    PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1997) The cerebrocerebellar system. Int Rev Neurobiol 41:31–60

    PubMed  CAS  Google Scholar 

  • Schwarz C, Möck M (2001) Spatial arrangement of cerebro-pontine terminals. J Comp Neurol 435:418–432

    Article  PubMed  CAS  Google Scholar 

  • Schwarz C, Thier P (1995) Modular organization of the pontine nuclei: dendritic fields of identified pontine projection neurons in the rat respect the borders of cortical afferent fields. J Neurosci 15:3475–3489

    PubMed  CAS  Google Scholar 

  • Schwarz C, Thier P (1999) Binding of signals relevant for action: towards a hypothesis of the functional role of the pontine nuclei. Trends Neurosci 22:443–451

    Article  PubMed  CAS  Google Scholar 

  • Shambes GM, Gibson JM, Welker W (1978) Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav Evol 15:94–140

    PubMed  CAS  Google Scholar 

  • Shumway CA, Morissette J, Gruen P, Bower JM (1999) Plasticity in cerebellar tactile maps in the adult rat. J Comp Neurol 413:583–592

    Article  PubMed  CAS  Google Scholar 

  • Stanfield BB, O’Leary DD (1985) The transient corticospinal projection from the occipital cortex during the postnatal development of the rat. J Comp Neurol 238:236–248

    Article  PubMed  CAS  Google Scholar 

  • Stein JF, Glickstein M (1992) Role of the cerebellum in visual guidance of movement. Physiol Rev 72:967–1017

    PubMed  CAS  Google Scholar 

  • Tomasch J (1968) The overall information carrying capacity of the major afferent and efferent cerebellar cell and fiber systems. Confin Neurol 30:359–367

    Article  PubMed  CAS  Google Scholar 

  • Tomasch J (1969) The numerical capacity of the human cortico-ponto-cerebellar system. Brain Res 13:476–484

    Article  PubMed  CAS  Google Scholar 

  • Torigoe Y, Blanks RHI, Precht W (1986) Anatomical studies on the nucleus reticularis tegmenti pontis in the pigmented rat. II. Subcortical afferents demonstrated by the retrograde transport of horseradish peroxidate. J Comp Neurol 243:88–105

    Article  PubMed  CAS  Google Scholar 

  • Ugolini G, Kuypers HG (1986) Collaterals of corticospinal and pyramidal fibres to the pontine grey demonstrated by a new application of the fluorescent fibre labelling technique. Brain Res 365:211–227

    Article  PubMed  CAS  Google Scholar 

  • Veenman CL, Reiner A, Honig MG (1992) Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies. J Neurosci Methods 41:239–254

    Article  PubMed  CAS  Google Scholar 

  • Voogd J (1995) Cerebellum. In: Bannister LH, Berry MM, Collins P, Dyson M, Dussek JE, Ferguson MWJ (eds) Gray’s anatomy. Churchill Livingstone, New York, pp 1027–1065

    Google Scholar 

  • Welker C (1971) Microelectrode delineation of fine grain somatotopic organization of (SmI) cerebral neocortex in albino rat. Brain Res 26:259–275

    PubMed  CAS  Google Scholar 

  • Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Peter Szucs, Francis Odeh, and Paul Johannes Helm for valuable advice concerning electrophysiological mapping, iontophoretic injections, and microscopy, and Christian Pettersen, Dagmar Magalei, and Anna Torbjørg Bore for expert technical assistance. This project was funded by The Research Council of Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trygve B. Leergaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolstad, I., Leergaard, T.B. & Bjaalie, J.G. Branching of individual somatosensory cerebropontine axons in rat: evidence of divergence. Brain Struct Funct 212, 85–93 (2007). https://doi.org/10.1007/s00429-007-0145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-007-0145-1

Keywords

Navigation