Skip to main content
Log in

Precerebellar and vestibular nuclei of the short-beaked echidna (Tachyglossus aculeatus)

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The monotremes are a unique group of living mammals, which diverged from the line leading to placental mammals at least 125 million years ago. We have examined the organization of pontine, inferior olivary, lateral reticular and vestibular nuclei in the brainstem of the short-beaked echidna (Tachyglossus aculeatus) to determine if the cyto- and chemoarchitecture of these nuclei are similar to that in placental mammals and marsupials. We have used Nissl staining in conjunction with enzyme-histochemistry for acetylcholinesterase, cytochrome oxidase and NADPH diaphorase as well as immunohistochemistry for non-phosphorylated neurofilament protein (SMI-32 antibody) and calcium binding proteins (parvalbumin, calbindin, calretinin). Homologies could be established between the arch shaped inferior olivary complex of the echidna and the principal, dorsal and medial accessory subdivisions of the therian inferior olivary complex. The pontine nuclei of the echidna included basilar and reticulotegmental components with similar cyto- and chemarchitectural features to therians and there were magnocellular and subtrigeminal components of the lateral reticular nucleus, also as seen in therians. Subdivisions and chemoarchitecture of the vestibular complex of the echidna were both similar to that region in rodents. In all three precerebellar nuclear groups studied and in the vestibular nucleus organization, the cyto- and chemoarchitecture of the echidna was very similar to that seen in therian mammals and no “primitive” or “reptilian” features were evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Copies of this report are available from the University of New South Wales Library.

References

  • Abbie AA (1934) The brainstem and cerebellum of Echidna aculeata. Philos Trans R Soc Lond B Biol Sci 224:1–74

    Article  Google Scholar 

  • Ashwell KWS (2006a) Chemoarchitecture of the monotreme olfactory bulb. Brain Behav Evol 67:69–84

    Article  PubMed  Google Scholar 

  • Ashwell KWS (2006b) Cyto- and chemoarchitecture of the monotreme olfactory tubercle. Brain Behav Evol 67:85–102

    Article  PubMed  Google Scholar 

  • Ashwell KWS, Phillips JM (2006) The anterior olfactory nucleus and piriform cortex of the echidna and platypus. Brain Behav Evol 67:203–227

    Article  PubMed  Google Scholar 

  • Ashwell KWS, Hardman CD, Paxinos G (2004) The claustrum is not missing from all monotreme brains. Brain Behav Evol 64:223–241

    Article  PubMed  Google Scholar 

  • Baizer JS, Baker JF (2005) Immunoreactivity for calcium-binding proteins defines subregions of the vestibular complex of the cat. Exp Brain Res 164:78–91

    Article  PubMed  CAS  Google Scholar 

  • Bangma GC, Ten Donkelaar HJ (1982) Afferent projections of the cerebellum in various types of reptiles. J Comp Neurol 207:255–273

    Article  PubMed  CAS  Google Scholar 

  • Bäurle J, Vogten H, Grüsser-Cornehls U (1998) Course and targets of the calbindin D-28k subpopulation of primary vestibular afferents. J Comp Neurol 402:111–128

    Article  PubMed  Google Scholar 

  • Bourrat F, Sotelo C (1991) Relationships between neuronal birthdates and cytoarchitecture in the rat inferior olivary complex. J Comp Neurol 313:509–521

    Article  PubMed  CAS  Google Scholar 

  • Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475

    Article  PubMed  CAS  Google Scholar 

  • De Leon M, Covenas R, Narvaez JA, Aguirre JA, Gonzalez-Baron S (1994) Distribution of calbindin D-28k-immunoreactivity in the cat brainstem. Arch Ital Biol 132:229–241

    PubMed  Google Scholar 

  • Foster RE, Peterson BE (1986) The inferior olivary complex of guinea pig: cytoarchitecture and cellular morphology. Brain Res Bull 17:785–800

    Article  PubMed  CAS  Google Scholar 

  • Gerrits NM, Voogd J (1986) The nucleus reticularis tegmenti pontis and the adjacent rostral paramedian reticular formation: differential projections to the cerebellum and the caudal brain stem. Exp Brain Res 62:29–45

    Article  PubMed  CAS  Google Scholar 

  • Gregory JE, Iggo A, McIntyre AK, Proske U (1987) Electroreceptors in the platypus. Nature 326:386–387

    Article  PubMed  CAS  Google Scholar 

  • Gregory JE, Iggo A, McIntyre AK, Proske U (1988) Receptors in the bill of the platypus. J Physiol 400:349–366

    PubMed  CAS  Google Scholar 

  • Griffiths M (1978) The biology of the monotremes. Academic, New York

    Google Scholar 

  • Grover BG, Grüsser-Cornehls U (1984) Cerebellar afferents in the frogs, Rana esculenta and Rana temporaria. Cell Tissue Res 237:237–259

    Article  Google Scholar 

  • Halasz P, Martin P (1995) Magellan: program for the quantitative analysis of histological sections. University of New South Wales Press, Sydney

    Google Scholar 

  • Hanker JS, Yates PE, metz CB, Rustioni A (1977) A new specific, sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase. Histochem J 9:789–792

    Article  PubMed  CAS  Google Scholar 

  • Hassiotis M, Paxinos G, Ashwell KWS (2004) Cyto- and chemoarchitecture of the cerebral cortex of the Australian echidna (Tachyglossus aculeatus). I. Areal organization. J Comp Neurol 475:495–517

    Article  Google Scholar 

  • Hassiotis M, Paxinos G, Ashwell KWS (2005) Cyto- and chemoarchitecture of the cerebral cortex of the Australian echidna (Tachyglossus aculeatus). II. Laminar organization and synaptic density. J Comp Neurol 482:94–122

    Article  PubMed  Google Scholar 

  • Hines M (1929) The brain of Ornithorhynchus anatinus. Philos Trans R Soc B Biol Sci 217:155–288

    Article  Google Scholar 

  • Holst MC (1986) The olivocerebellar projection in a marsupial and a monotreme. PhD Thesis, The University of New South Wales

  • Kapogianis EM, Flumerfelt BA, Hrycyshyn AW (1982a) Cytoarchitecture and cytology of the lateral reticular nucleus in the rat. Anat Embryol 164:229–242

    Article  PubMed  CAS  Google Scholar 

  • Kapogianis EM, Flumerfelt BA, Hrycyshyn AW (1982b) A Golgi study of the lateral reticular nucleus in the rat. Anat Embryol 164:243–256

    Article  PubMed  CAS  Google Scholar 

  • Kevetter GA (1996) Pattern of selected calcium-binding proteins in the vestibular nuclear complex of two rodent species. J Comp Neurol 365:575–584

    Article  PubMed  CAS  Google Scholar 

  • Kevetter GA, Leonard RB (1997) Use of calcium-binding proteins to map inputs in vestibular nuclei of the gerbil. J Comp Neurol 386:317–327

    Article  PubMed  CAS  Google Scholar 

  • Kooy FH (1917) The inferior olive in vertebrates. Folia Neurobiol 10:205–369

    Google Scholar 

  • Künzle H (1983) Supraspinal cell populations projecting to the cerebellar cortex in the turtle (Pseudemys scripta elegans). Exp Brain Res 49:1–12

    Article  PubMed  Google Scholar 

  • Künzle H, Wiklund L (1982) Identification and distribution of neurons presumed to give rise to cerebellar climbing fibres in the turtle: a retrograde axonal flow study using radioactive d-aspartate as a marker. Brain Res 252:146–150

    Article  PubMed  Google Scholar 

  • Larsell O (1970) The comparative anatomy and histology of the cerebellum from monotremes through apes. In: Jansen J (ed) University of Minnesota Press, Minneapolis

  • Manger PR, Fahringer HM, Pettigrew JD, Siegel JM (2002) The distribution and morphological characteristics of catecholaminergic cells in the brain of monotremes as revealed by tyrosine hydroxylase immunohistochemistry. Brain Behav Evol 60:298–314

    Article  PubMed  CAS  Google Scholar 

  • Marani E, Voogd J, Boekee A (1977) Acetylcholinesterase staining in subdivisions of the cat’s inferior olive. J Comp Neurol 174:209–226

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26:106–117

    PubMed  CAS  Google Scholar 

  • Mihailoff GA, McArdle CB, Adams CE (1981) The cytoarchitecture, cytology and synaptic organization of the basilar pontine nuclei in the rat. I. Nissl and Golgi studies. J Comp Neurol 195:181–201

    Article  PubMed  CAS  Google Scholar 

  • Musser AM (2003) Review of the monotreme fossil record and comparison of paleontological and molecular data. Comp Biochem Physiol A Mol Integr Physiol 136:927–942

    Article  PubMed  CAS  Google Scholar 

  • Nag TC, Wadhwa S (2004) Ontogeny of two calcium-binding proteins (calbindin D-28k and parvalbumin) in the human inferior olivary complex and their distribution in the adults. J Chem Neuroanat 27:183–192

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Carrive P, Wang H-Q, Wang P-Y (1999) Chemoarchitectonic atlas of the rat brainstem. Academic, San Diego

    Google Scholar 

  • Scheich H, Langner G, Tidemann C, Coles RB, Guppy A (1986) Electroreception and electrolocation in platypus. Nature 319:401–402

    Article  PubMed  CAS  Google Scholar 

  • Schwaller B, Buchwald P, Blumcke I, Celio MR, Hunziker W (1993) Characterization of a polyclonal antiserum against the purified human recombinant calcium binding protein calretinin. Cell Calcium 14:639–648

    Article  PubMed  CAS  Google Scholar 

  • Schwarz C, Thier P (1996) Comparison of projection neurons in the pontine nuclei and the nucleus reticularis tegmenti pontis of the rat. J Comp Neurol 376:403–419

    Article  PubMed  CAS  Google Scholar 

  • Torigoe Y, Blanks RHI, Precht W (1986) Anatomical studies on the nucleus reticularis tegmenti pontis in the pigmented rat. I. Cytoarchitecture, topography, and cerebral cortical afferents. J Comp Neurol 243:71–87

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the Australian Research Council. We would like to thank Dr. Hong-qin Wang and Dr. Luan-ling Zhang for assistance in tissue processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. W. S. Ashwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashwell, K.W.S., Paxinos, G. & Watson, C.R.R. Precerebellar and vestibular nuclei of the short-beaked echidna (Tachyglossus aculeatus). Brain Struct Funct 212, 209–221 (2007). https://doi.org/10.1007/s00429-007-0139-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-007-0139-z

Keywords

Navigation