Skip to main content

Advertisement

Log in

Two endothelial cell lines derived from the somite

  • Review
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

Somites are sequentially formed, metameric units of the paraxial mesoderm of vertebrate embryos. They are the most obvious correlative of the segmental patterning along the cranio-caudal axis and transfer segmentation to other tissues such as the spinal nerves and dorsal aortic branches. Furthermore, somites are the source of numerous mesodermal cell types such as smooth and striated muscle, cartilage and tendon cells, and soft connective tissue. They also give rise to endothelial cells. Here we focus on the finding that two lineages of endothelial cells, blood vascular endothelial cells and lymphatic endothelial cells are derived from the somite. Their precursors, angioblasts, and lymphangioblasts, respectively, are born in the somite at different time points. Angioblasts are characterized by the expression of vascular endothelial growth factor receptor-2, whereas lymphangioblasts express the homeobox transcription factor Prox1. There seem to be two types of lymphangioblasts. Type 1 is derived from venous endothelium, while type 2 originates from mesenchymal precursor cells. The molecular networks of angioblast and lymphangioblast development and the relation between the two cell types and hematopoietic cells are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brand-Saberi B, Wilting J, Ebensperger C, Christ B (1996) The formation of somite compartments in the avian embryo. Int J Dev Biol 40(1):411–420

    PubMed  CAS  Google Scholar 

  • Breier G, Breviario F, Caveda L, Berthier R, Schnurch H, Gotsch U, Vestweber D, Risau W, Dejana E (1996) Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood 87(2):630–641

    PubMed  CAS  Google Scholar 

  • Brent AE, Schweitzer R, Tabin CJ (2003) A somitic compartment of tendon progenitors. Cell 113(2):235–248

    Article  PubMed  CAS  Google Scholar 

  • Buttler K, Kreysing A, von Kaisenberg CS, Schweigerer L, Gale N, Papoutsi M, Wilting J (2006) Mesenchymal cells with leukocyte and lymphendothelial characteristics in murine embryos. Dev Dyn 235(6):1554–1562

    Article  PubMed  CAS  Google Scholar 

  • Canon J, Banerjee U (2000) Runt and lozenge function in drosophila development. Semin Cell Dev Biol 11(5):327–336

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389–395

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single vegf allele. Nature 380(6573):435–439

    Article  PubMed  CAS  Google Scholar 

  • Christ B, Wilting J (1992) From somites to vertebral column. Ann Anat 174(1):23–32

    PubMed  CAS  Google Scholar 

  • Clark ER, Clark EL (1920) On the origin and early development of the lymphatic system of the chick. Contrib Embryol 9:447–482

    Google Scholar 

  • Dubrulle J, McGrew MJ, Pourquie O (2001) FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106(2):219–232

    Article  PubMed  CAS  Google Scholar 

  • Eichmann A, Marcelle C, Breant C, Le Douarin NM (1993) Two molecules related to the vegf receptor are expressed in early endothelial cells during avian embryonic development. Mech Dev 42(1–2):33–48

    Article  PubMed  CAS  Google Scholar 

  • Eichmann A, Pardanaud L, Yuan L, Moyon D (2002) Vasculogenesis and the search for the hemangioblast. J Hematother Stem Cell Res 11(2):207–214

    Article  PubMed  Google Scholar 

  • Ema M, Faloon P, Zhang WJ, Hirashima M, Reid T, Stanford WL, Orkin S, Choi K, Rossant J (2003) Combinatorial effects of flk1 and tal1 on vascular and hematopoietic development in the mouse. Genes Dev 17(3):380–393

    Article  PubMed  CAS  Google Scholar 

  • Endoh M, Ogawa M, Orkin S, Nishikawa S (2002) Scl/tal-1-dependent process determines a competence to select the definitive hematopoietic lineage prior to endothelial differentiation. Embo J 21(24):6700–6708

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the vegf gene. Nature 380(6573):439–442

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Hillan KJ, Novotny W (2005) Bevacizumab (avastin), a humanized anti-vegf monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 333(2):328–335

    Article  PubMed  CAS  Google Scholar 

  • Flamme I, Risau W (1992) Induction of vasculogenesis and hematopoiesis in vitro. Development 116(2):435–439

    PubMed  CAS  Google Scholar 

  • Gering M, Rodaway AR, Gottgens B, Patient RK, Green AR (1998) The scl gene specifies haemangioblast development from early mesoderm. Embo J 17(14):4029–4045

    Article  PubMed  CAS  Google Scholar 

  • Godin I, Cumano A (2002) The hare and the tortoise: an embryonic haematopoietic race. Nat Rev Immunol 2(8):593–604

    PubMed  CAS  Google Scholar 

  • Hong YK, Foreman K, Shin JW, Hirakawa S, Curry CL, Sage DR, Libermann T, Dezube BJ, Fingeroth JD, Detmar M (2004) Lymphatic reprogramming of blood vascular endothelium by kaposi sarcoma-associated herpesvirus. Nat Genet 36(7):683–685

    Article  PubMed  CAS  Google Scholar 

  • Jaffredo T, Gautier R, Eichmann A, Dieterlen-Lievre F (1998) Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 125(22):4575–4583

    PubMed  CAS  Google Scholar 

  • Kalev-Zylinska ML, Horsfield JA, Flores MV, Postlethwait JH, Vitas MR, Baas A M, Crosier PS, Crosier KE (2002) Runx1 is required for zebrafish blood and vessel development and expression of a human runx1-cbf2t1 transgene advances a model for studies of leukemogenesis. Development 129(8):2015–2030

    PubMed  CAS  Google Scholar 

  • Kubo H, Alitalo K (2003) The bloody fate of endothelial stem cells. Genes Dev 17(3):322–329

    Article  PubMed  CAS  Google Scholar 

  • Liao W, Bisgrove BW, Sawyer H, Hug B, Bell B, Peters K, Grunwald DJ, Stainier DY (1997) The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation. Development 124(2):381–389

    PubMed  CAS  Google Scholar 

  • Manaia A, Lemarchandel V, Klaine M, Max-Audit I, Romeo P, Dieterlen-Lievre F, Godin I (2000) Lmo2 and gata-3 associated expression in intraembryonic hemogenic sites. Development 127(3):643–653

    PubMed  CAS  Google Scholar 

  • McGrew MJ, Pourquie O (1998) Somitogenesis: segmenting a vertebrate. Curr Opin Genet Dev 8(4):487–493

    Article  PubMed  CAS  Google Scholar 

  • Neufeld G, Kessler O, Herzog Y (2002) The interaction of neuropilin-1 and neuropilin-2 with tyrosine-kinase receptors for vegf. Adv Exp Med Biol 515:81–90

    PubMed  CAS  Google Scholar 

  • Nimmagadda S, Geetha Loganathan P, Huang R, Scaal M, Schmidt C, Christ B (2005) Bmp4 and noggin control embryonic blood vessel formation by antagonistic regulation of vegfr-2 (quek1) expression. Dev Biol 280(1):100–110

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa SI, Nishikawa S, Kawamoto H, Yoshida H, Kizumoto M, Kataoka H, Katsura Y (1998) In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity 8(6):761–769

    Article  PubMed  CAS  Google Scholar 

  • Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR (1996). Aml1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84(2):321–330

    Article  PubMed  CAS  Google Scholar 

  • Oliver G, Harvey N (2002) A stepwise model of the development of lymphatic vasculature. Ann N Y Acad Sci 979:159–165 (discussion 188–196)

    Google Scholar 

  • Palmeirim I, Henrique D, Ish-Horowicz D, Pourquie O (1997). Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91(5):639–648

    Article  PubMed  CAS  Google Scholar 

  • Papoutsi M, Tomarev SI, Eichmann A, Prols F, Christ B, Wilting J (2001) Endogenous origin of the lymphatics in the avian chorioallantoic membrane. Dev Dyn 222(2):238–251

    Article  PubMed  CAS  Google Scholar 

  • Pardanaud L, Dieterlen-Lievre F (1999) Manipulation of the angiopoietic/hemangiopoietic commitment in the avian embryo. Development 126(4):617–627

    PubMed  CAS  Google Scholar 

  • Pardanaud L, Altmann C, Kitos P, Dieterlen-Lievre F, Buck CA (1987) Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100(2):339–349

    PubMed  CAS  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674

    Article  PubMed  CAS  Google Scholar 

  • Sabin FR (1902) On the origin and development of the lymphatic system from the veins and the development of the lymph hearts and the thoracic duct in the pig. Am J Anat 1:367–389

    Article  Google Scholar 

  • Sabin FR (1909) The lymphatic system in human embryos, with consideration of the system of a whole. Am J Anat 9:43–91

    Article  Google Scholar 

  • Sabin FR (1920) Studies on the origin of blood-vessels and red blood corpuscles as seen in the living blastoderm of chicks during the second day of incubation. Carnegie Contrib Embryol 272:214–262

    Google Scholar 

  • Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in flk-1-deficient mice. Nature 376(6535):62–66

    Article  PubMed  CAS  Google Scholar 

  • Takakura N, Watanabe T, Suenobu S, Yamada Y, Noda T, Ito Y, Satake M, Suda T (2000) A role for hematopoietic stem cells in promoting angiogenesis. Cell 102(2):199–209

    Article  PubMed  CAS  Google Scholar 

  • Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K (2000) Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 60(2):203–212

    PubMed  CAS  Google Scholar 

  • Veikkola T, Jussila L, Makinen T, Karpanen T, Jeltsch M, Petrova TV, Kubo H, Thurston G, McDonald DM, Achen MG, Stacker SA, Alitalo K (2001) Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. Embo J 20(6):1223–1231

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL, Huang X, Bushweller JH, Bories JC, Alt FW, Ryan G, Liu PP, Wynshaw-Boris A, Binder M, Marin-Padilla M, Sharpe AH, Speck NA (1996) The cbfbeta subunit is essential for cbfalpha2 (aml1) function in vivo. Cell 87(4):697–708

    Article  PubMed  CAS  Google Scholar 

  • Westendorf JJ, Hiebert SW (1999) Mammalian runt-domain proteins and their roles in hematopoiesis, osteogenesis, and leukemia. J Cell Biochem Suppl 32–33:51–58

    Article  Google Scholar 

  • Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98(6):769–778

    Article  PubMed  CAS  Google Scholar 

  • Wilting J, Brand-Saberi B, Huang R, Zhi Q, Kontges G, Ordahl CP, Christ B (1995) Angiogenic potential of the avian somite. Dev Dyn 202(2):165–171

    PubMed  CAS  Google Scholar 

  • Wilting J, Eichmann A, Christ B (1997) Expression of the avian vegf receptor homologues quek1 and quek2 in blood-vascular and lymphatic endothelial and non-endothelial cells during quail embryonic development. Cell Tissue Res 288(2):207–223

    Article  PubMed  CAS  Google Scholar 

  • Wilting J, Aref Y, Huang R, Tomarev SI, Schweigerer L, Christ B, Valasek P, Papoutsi M (2006) Dual origin of avian lymphatics. Dev Biol 292(1):165–173

    Article  PubMed  CAS  Google Scholar 

  • Winnier G, Blessing M, Labosky PA, Hogan BL (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9(17):2105–2116

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, Rossant J (1993) Flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118(2):489–498

    PubMed  CAS  Google Scholar 

  • Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407(6801):242–248

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Deutsche Forschungsgemeinschaft (grant Wi 1452/8-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Wilting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilting, J., Becker, J. Two endothelial cell lines derived from the somite. Brain Struct Funct 211 (Suppl 1), 57–63 (2006). https://doi.org/10.1007/s00429-006-0120-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-006-0120-2

Keywords

Navigation