Skip to main content
Log in

Location and variability of epicardiac ganglia in human fetuses

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The aim of the study was to determine the morphology of epicardiac ganglia in human fetuses at different stages of their development as these ganglia are considered to be of a pivotal clinical importance. Twenty-one fetal hearts were investigated applying a technique of histochemistry for acetylcholinesterase to visualize the epicardiac neural ganglionated plexus with its subsequent stereoscopic examination on total organs. In all of the examined fetuses, epicardiac neural plexus with numerous ganglia was well recognizable and could be clearly differentiated into seven ganglionated subplexuses, topography and structural organization of which were typical for hearts of adult human. The largest ganglion number comprising 77% of all counted ganglia was identified on the dorsal atrial surface. Fetal epicardiac plexus in gestation period of 15–40 weeks contained 929 ± 62 ganglia, but ganglion amount did vary substantially from heart to heart. In conclusion, this study implies that the human fetal epicardiac ganglia occupy their definitive location already at gestation period from 15 weeks and their number as well as distribution on heart surface presumably is not age dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ardell JL (1994) Structure and function of mammalian intrinsic cardiac neurons. In: Armour JA, Ardell JL (eds) Neurocardiology. Oxford University Press, New York, pp 95–114

    Google Scholar 

  • Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA (1997) Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec 247:289–298

    Article  PubMed  CAS  Google Scholar 

  • Arora RC, Waldmann M, Hopkins DA, Armour JA (2003) Porcine intrinsic cardiac ganglia. Anat Rec 271A:249–258

    Article  Google Scholar 

  • Baptista CA, Kirby ML (1997) The cardiac ganglia: cellular and molecular aspects. Kaohsiung J Med Sci 13:42–54

    PubMed  CAS  Google Scholar 

  • Batulevicius D, Pauziene N, Pauza DH (2003) Topographic morphology and age-related analysis of the neuronal number of the rat intracardiac nerve plexus. Ann Anat 185:449–459

    Article  PubMed  Google Scholar 

  • Batulevicius D, Pauziene N, Pauza DH (2004) Key anatomic data for the use of rat heart in electrophysiological studies of the intracardiac nervous system. Medicina (Kaunas) 40:253–259

    Google Scholar 

  • Batulevicius D, Pauziene N, Pauza DH (2005) Architecture and age-related analysis of the neuronal number of the guinea pig intrinsic cardiac nerve plexus. Ann Anat 187:225–243

    Article  PubMed  Google Scholar 

  • Baumgart D, Heusch G (1995) Neuronal control of coronary blood flow. Basic Res Cardiol 90:142–159

    Article  PubMed  CAS  Google Scholar 

  • Blaufox AD, Felix GL, Saul JP (2001) Radiofrequency catheter ablation in infants </=18 months old: when is it done and how do they fare? Circulation 104:2803–2808

    Article  PubMed  CAS  Google Scholar 

  • Bojsen-Moller F, Tranum-Jensen J (1971) Whole-mount demonstration of cholinesterase containing nerves in the right atrial wall, nodal tissue, and atrioventricular bundle of the pig heart. J Anat 108:375–386

    PubMed  CAS  Google Scholar 

  • Dickerson LW, Rodak DJ, Fleming TJ, Gatti PJ, Massari VJ, McKenzie JC, Gillis RA (1998) Parasympathetic neurons in the cranial medial ventricular fat pad on the dog heart selectively decrease ventricular contractility. J Auton Nerv Syst 70:129–141

    Article  PubMed  CAS  Google Scholar 

  • Feigl EO (1998) Neural control of coronary blood flow. J Vasc Res 35:85–92

    Article  PubMed  CAS  Google Scholar 

  • Furukawa Y, Takei M, Narita M, Karasawa Y, Tada A, Zenda H, Chiba S (1997) Different sympathetic-parasympathetic interactions on sinus rate and atrioventricular conduction in dog hearts. Eur J Pharmacol 334:191–200

    Article  PubMed  CAS  Google Scholar 

  • Jurgaitiene R, Pauziene N, Azelis V, Zurauskas E (2004) Morphometric study of age-related changes in the human intracardiac ganglia. Medicina (Kaunas) 40:574–581

    Google Scholar 

  • Karnovsky MJ, Roots L (1964) A “Direct-Coloring” thiocholine method for cholinesterases. J Histochem Cytochem 12:219–221

    PubMed  CAS  Google Scholar 

  • Khabarova AY (1975) Innervation of the heart and coronary vessels (in Russian). Nauka, Leningrad

  • King TS, Coakley JB (1958) The intrinsic nerve cells of the cardiac atria of mammals and man. J Anat 92:353–376

    PubMed  CAS  Google Scholar 

  • Larsen RL, Applegate PM, Dyar DA, Ribeiro PA, Fritzsche SD, Mulla NF, Shirali GS, Kuhn MA, Chinnock RE, Shah PM (1998) Dobutamine stress echocardiography for assessing coronary artery disease after transplantation in children. J Am Coll Cardiol 32:515–520

    Article  PubMed  CAS  Google Scholar 

  • Marron K, Wharton J, Sheppard MN, Fagan D, Royston D, Kuhn DM, de Leval MR, Whitehead BF, Anderson RH, Polak JM (1995) Distribution, morphology, and neurochemistry of endocardial and epicardial nerve terminal arborizations in the human heart. Circulation 92:2343–2351

    PubMed  CAS  Google Scholar 

  • Navaratnam V (1965) Development of the nerve supply to the human heart. Br Heart J 27:640–650

    Article  PubMed  CAS  Google Scholar 

  • Olufsen MS, Ottesen JT, Tran HT, Ellwein LM, Lipsitz LA, Novak V (2005) Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. J Appl Physiol 99:1523–1537

    Article  PubMed  Google Scholar 

  • Osborn DA, Lau KC, Uther JB, Coughtrey H, Rochefort MJ (1999) Radiofrequency catheter ablation in a haemodynamically compromised premature neonate with hydrops fetalis. J Paediatr Child Health 35:406–408

    Article  PubMed  CAS  Google Scholar 

  • Oudijk MA, Stoutenbeek P, Sreeram N, Visser GH, Meijboom EJ (2003) Persistent junctional reciprocating tachycardia in the fetus. J Matern Fetal Neonatal Med 13:191–196

    Article  PubMed  CAS  Google Scholar 

  • Pauza DH, Pauziene N, Tamasauskas K, Stropus R (1996) Heart Hilum. Medicina (Kaunas) 32:35–37

    Google Scholar 

  • Pauza DH, Pauziene N, Tamasauskas KA, Stropus R (1997) Hilum of the heart. Anat Rec 248:322–324

    Article  PubMed  CAS  Google Scholar 

  • Pauza DH, Skripka V, Pauziene N, Stropus R (1999) Anatomical study of the neural ganglionated plexus in the canine right atrium: implications for selective denervation and electrophysiology of the sinoatrial node in dog. Anat Rec 255:271–294

    Article  PubMed  CAS  Google Scholar 

  • Pauza DH, Skripka V, Pauziene N, Stropus R (2000) Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart. Anat Rec 259: 353–382

    Article  PubMed  CAS  Google Scholar 

  • Pauza DH, Pauziene N, Pakeltyte G, Stropus R (2002a) Comparative quantitative study of the intrinsic cardiac ganglia and neurons in the rat, guinea pig, dog and human as revealed by histochemical staining for acetylcholinesterase. Ann Anat 184:125–136

    Article  Google Scholar 

  • Pauza DH, Skripka V, Pauziene N (2002b) Morphology of the intrinsic cardiac nervous system in the dog: a whole-mount study employing histochemical staining with acetylcholinesterase. Cells Tissues Organs 172:297–320

    Article  Google Scholar 

  • Randall DC, Brown DR, McGuirt AS, Thompson GW, Armour JA, Ardell JL (2003) Interactions within the intrinsic cardiac nervous system contribute to chronotropic regulation. Am J Physiol Regul Integr Comp Physiol 285:R1066–1075

    PubMed  CAS  Google Scholar 

  • Shah MJ, Garabedian H, Garoutte MC, Cecchin F (2001) Catheter ablation of a right atrial appendage to the right ventricle connection in a neonate. Pacing Clin Electrophysiol 24:1427–1429

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Johnson PI, Lee RE, Orfei E, Lonchyna VA, Sullivan HJ, Montoya A, Tran H, Wehrmacher WH, Wurster RD (1996) Topography of cardiac ganglia in the adult human heart. J Thorac Cardiovasc Surg 112:943–953

    Article  PubMed  CAS  Google Scholar 

  • Smith RB (1970a) The development of the intrinsic innervation of the human heart between the 10 and 70 mm stages. J Anat 107:271–279

    CAS  Google Scholar 

  • Smith RB (1970b) The occurrence and location of intrinsic cardiac ganglia and nerve plexuses in the human neonate. Anat Rec 166:33–40

    Google Scholar 

  • Smith RB (1971) Intrinsic innervation of the human heart in foetuses between 70 mm and 420 mm crown–rump length. Acta Anat 78:200–209

    Article  PubMed  CAS  Google Scholar 

  • Stropus R, Vaicekauskas V (1978) Species-related differences in the cholinergic and adrenergic innervation of the heart. Folia Morphol 37:321–325

    CAS  Google Scholar 

  • Tsuboi M, Furukawa Y, Nakajima K, Kurogouchi F, Chiba S (2000) Inotropic, chronotropic, and dromotropic effects mediated via parasympathetic ganglia in the dog heart. Am J Physiol Heart Circ Physiol 279:H1201–1207

    PubMed  CAS  Google Scholar 

  • Van Hare GF, Javitz H, Carmelli D, Saul JP, Tanel RE, Fischbach PS, Kanter RJ, Schaffer M, Dunnigan A, Colan S, Serwer G (2004) Prospective assessment after pediatric cardiac ablation: recurrence at 1 year after initially successful ablation of supraventricular tachycardia. Heart Rhythm 1:188–196

    Article  PubMed  Google Scholar 

  • Vouhe PR, Tamisier D, Le Bidois J, Sidi D, Mauriat P, Pouard P, Lefebvre D, Albanese SB, Khoury W, Kachaner J, et al. (1993) Pediatric cardiac transplantation for congenital heart defects: surgical considerations and results. Ann Thorac Surg 56:1239–1247

    Article  PubMed  CAS  Google Scholar 

  • Vranicar M, Hirsch R, Canter CE, Balzer DT (2000) Selective coronary angiography in pediatric patients. Pediatr Cardiol 21:285–288

    Article  PubMed  CAS  Google Scholar 

  • Yuan BX, Ardell JL, Hopkins DA, Losier AM, Armour JA (1994) Gross and microscopic anatomy of the canine intrinsic cardiac nervous system. Anat Rec 239:75–87

    Article  PubMed  CAS  Google Scholar 

  • Young MA, Knight DR, Vatner SF (1987) Autonomic control of large coronary arteries and resistance vessels. Prog Cardiovasc Dis 30:211–234

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Mrs. Darius Pranys and Valdas Sarauskas as well as Drs. Valdas and Gertruda Skripkai for their support in sampling material for the present study. This study was in part supported by a grant from Lithuanian State Science and Studies Foundation (N 455/2001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dainius H. Pauza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saburkina, I., Pauza, D.H. Location and variability of epicardiac ganglia in human fetuses. Anat Embryol 211, 585–594 (2006). https://doi.org/10.1007/s00429-006-0110-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-006-0110-4

Keywords

Navigation