Skip to main content
Log in

The adrenal gland of newt Triturus carnifex (Amphibia, Urodela) following in vivo betamethasone administration

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The response of the adrenal gland of Triturus carnifex to betamethasone administration was studied; the effects were evaluated by examination of the ultrastructural morphological features of the tissues as well as the serum levels of aldosterone, corticosterone, norepinephrine and epinephrine. In March and June, betamethasone significantly decreased the serum levels of aldosterone and corticosterone and the lipid droplet content in the steroidogenic cells. Moreover, betamethasone influenced the chromaffin tissue, enhancing in March (when the chromaffin cells produce norepinephrine and epinephrine in almost equal quantities) epinephrine serum levels and the numeric ratio between norepinephrine and epinephrine granules in the chromaffin cells. In June, (when the chromaffin cells contain almost exclusively norepinephrine granules) betamethasone administration raised norepinephrine serum levels, whereas a decrease in the numeric ratio between norepinephrine and epinephrine granules in the chromaffin cells was found. Finally, betamethasone administration did not evoke in June any increase in the mean number of epinephrine granules in the chromaffin cells and/or in epinephrine serum levels, as would be expected if phenyletanolamine-N-methyl transferase (PNMT) enzyme, converting norepinephrine into epinephrine, were activated by corticosteroids. The results of this study showed that betamethasone decreased aldosterone and corticosterone serum levels and enhanced catecholamine serum concentrations. Moreover, the present results suggest that a stimulatory role of glucocorticoids on PNMT enzyme may be ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andreoletti GE, Colucci D, Vellano C (1984) Annual cycle of testosterone and oestradiol in the crested newt (Triturus cristatus carnifex Laur.). Atti Accad Sci Torino 118:157–164

    CAS  Google Scholar 

  • Andreoletti GE, Vellano C, Colucci D, Androne C, Mazzi V, Fasolo A (1988) Anatomical organization of CRF-and AVT-like systems in the newt hypothalamus and the effects of localised lesion to the posterior hypothalamus on serum aldosterone and corticosterone. Boll Zool 55:261–268

    Google Scholar 

  • Axelrod J (1962) Purification and properties of phenylethanolamine-N-methyltransferase. J Biol Chem 237:657–660

    Google Scholar 

  • Bornstein SR, Ehrart-Bornstein M, Scherbaum WA (1997) Morphological and functional studies of the paracrine interaction between cortex and medulla in the adrenal gland. Microsc Res Tech 36:520–533

    Article  PubMed  CAS  Google Scholar 

  • Capaldo A, Gay F, Valiante S, Laforgia V, Varano L (2004a) Effects of noradrenaline administration on the interrenal gland of the newt, Triturus carnifex: evidence of intra-adrenal paracrine interactions. J Morphol 259:33–40

    Article  CAS  Google Scholar 

  • Capaldo A, Gay F, Valiante S, Laforgia V, Varano L (2004b) Effects of adrenaline administration on the interrenal gland of the newt, Triturus carnifex: evidence of intra-adrenal paracrine interactions. J Morphol 261:18–25

    Article  CAS  Google Scholar 

  • Capaldo A, Gay F, Valiante S, Varlese MG, Laforgia V, Varano L (2004c) Release of aldosterone and catecholamines from the interrenal gland of Triturus carnifex in response to adrenocorticotropic hormone (ACTH) administration. J Morphol 262:692–700

    Article  CAS  Google Scholar 

  • Carrasco-Serrano C, Criado M (2004) Glucocorticoid activation of the neuronal nicotinic acetylcholine receptor alpha7 subunit gene: involvement of transcription factor Egr-1. FEBS Lett 566:247–250

    Article  PubMed  CAS  Google Scholar 

  • Crivellato E, Guidolin D, Nico B, Nussdorfer GG, Ribatti D (2006) Fine ultrastructure of chromaffin granules in rat adrenal medulla indicative of a vesicle-mediated secretory process. Anat Embryol 211:79–86

    Article  PubMed  CAS  Google Scholar 

  • Dupont W, Leboulenger F, Vaudry H, Vaillant R (1976) Regulation of aldosterone secretion in the frog Rana esculenta L. Gen Comp Endocrinol 29:51–60

    Article  PubMed  CAS  Google Scholar 

  • Galgano M (1942) L’azione ormonale delle gonadi e dell’ipofisi sul ciclo sessuale annuale degli anfibi, in rapporto al clima. Boll Soc Ital Biol Sperim 17:1–3

    Google Scholar 

  • Galgano M (1943) Tratti fondamentali del ciclo sessuale annuale negli anfibi dei nostri climi. Boll Zool 14:57–74

    Google Scholar 

  • Gfell B, Kloas W, Hanke W (1997) Neuroendocrine effects on adrenal hormone secretion in carp (Cyprinus carpio). Gen Comp Endocrinol 106:310–319

    Article  PubMed  CAS  Google Scholar 

  • Grassi Milano E, Accordi A (1986) Evolutionary trends in adrenal gland of anurans and urodeles. J Morphol 189:249–259

    Article  Google Scholar 

  • Gupta OP, Hanke W (1994) Regulation of interrenal secretion in the axolotl Ambystoma mexicanum. Exp Clin Endocrinol 102:299–306

    PubMed  CAS  Google Scholar 

  • Hanke W (1978) The adrenal cortex of Amphibia. In: Chester Jones I, Henderson IW (eds) General, comparative and clinical endocrinology of the adrenal cortex. Academic, New York, pp 419–495

    Google Scholar 

  • Hiwatashi Y, Kurahashi Y, Hatada R, Ueno S, Honma T, Yanagihara N, Yanase H, Iwanaga T, Ohizumi Y, Yamakuni T (2002) Glucocorticoids inhibits expression of V-1, a catecholamine byosinthesis regulatory protein, in cultured adrenal medullary cells. FEBS Lett 528:166–170

    Article  PubMed  CAS  Google Scholar 

  • Hodel A (2001) Effects of glucocorticoids on adrenal chromaffin cells. J Neuroendocrinol 13:216–221

    Article  PubMed  CAS  Google Scholar 

  • Kent C, Parker KG (1993) Effects of ACTH and aminoglutethimide on the catecholamine content and chromaffin cell morphology of the adrenal medulla of the neonatal rat. J Anat 183:601–607

    PubMed  CAS  Google Scholar 

  • Kloas W, Hanke W (1990) Neurohypophysial hormones and steroidogenesis in the interrenals of Xenopus laevis. Gen Comp Endocrinol 80:321–330

    Article  PubMed  CAS  Google Scholar 

  • Kloas W, Hanke W (1992) Effects of atrial natriuretic factor on corticosteroid and catecholamine secretion by the adrenals of Xenopus laevis. Gen Comp Endocrinol 85:269–277

    Article  PubMed  CAS  Google Scholar 

  • Kloas W, Hanke W (1993) Receptors for atrial natriuretic factor (ANF) in kidney and adrenal tissue of urodeles-Lack of angiotensin II (A II) receptors in these tissues. Gen Comp Endocrinol 91:235–249

    Article  PubMed  CAS  Google Scholar 

  • Kloas W, Reinecke M, Hanke W (1997) Stage-dependent changes in adrenal steroids and catecholamines during development in Xenopus laevis. Gen Comp Endocrinol 108:416–426

    Article  PubMed  CAS  Google Scholar 

  • Laborie C, Van Camp G, Bernet F, Montel V, Dupouy JP (2003) Metyrapone-induced glucocorticoid depletion modulates tyrosine hydroxylase and phenyletanolamine-N-methyltransferase gene expression in the rat adrenal gland by a noncholinergic transsynaptic activation. J Neuroendocrinol 15:15–23

    Article  PubMed  CAS  Google Scholar 

  • Laforgia V, Capaldo A (1991) Annual cycle of the chromaffin cells of Triturus cristatus. J Morphol 208:83–90

    Article  Google Scholar 

  • Laforgia V, Capaldo A (1992) The interrenal gland of Triturus cristatus after insulin administration during the annual cycle. J Morphol 211:87–93

    Article  Google Scholar 

  • Laforgia V, Muoio R (1997) Effects of ACTH and corticosteroids on phenylethanolamine-N-methyltransferase (PNMT) expression as determined by immunocytochemical localization in the adrenal gland of the lizard Podarcis sicula. Ital J Zool 64:301–306

    Article  CAS  Google Scholar 

  • Laforgia V, Varano L (1978) The influence of the interrenal steroidogenic tissue on the chromaffin cells of the adrenal gland of Lacerta s.sicula Raf: effects of ACTH administration during the winter. Cell Mol Biol 23:379–390

    CAS  Google Scholar 

  • Laforgia V, Capaldo A, Muoio R, Varano L (1998) Electron immunocytochemical localization of Neuropeptide Y, Leu-Enkephalin, and Somatostatin (S-14) in the interrenal gland of the newt Triturus cristatus. Ann NYAcad Sci 839:569–570

    Article  CAS  Google Scholar 

  • Lloréns I, Borrell J, Borrell S (1973) Effects of insulin, glucagon and adrenocorticotrophin on the levels of corticosteroids, noradrenaline, adrenaline and ascorbic acid in the adrenal gland of cats. Hormone Res 4:321–330

    Article  PubMed  Google Scholar 

  • Manojlović Stojanoski M, Nestorović N, Negić N, Filipović B, Šośić-Juriević B, Milośević V, Sekulić M (2006) The pituitary-adrenal axis of fetal rats after maternal dexamethasone treatment. Anat Embryol 211:61–69

    Article  CAS  Google Scholar 

  • Masood-Hussain M, Saidapur SK (1984) Cytophysiological studies on the effects of amphenone ‘B’ and dexamethasone on the pars distalis and interrenal gland of Rana cyanophlyctis (Schn). Arch Anat Histol Embryol 67:77–87

    PubMed  CAS  Google Scholar 

  • Netchitailo P, Larcher A, Leboulenger F, Feuilloley M, Philibert D, Vaudry H (1991) Self-inhibition of steroid secretion by amphibian adrenocortical cells is not mediated through glucocorticoid receptors. J Mol Endocrinol 6:249–255

    Article  PubMed  CAS  Google Scholar 

  • Nussdorfer GG (1996) Paracrine control of adrenal cortical function by medullary chromaffin cells. Pharmacol Rev 48:495–530

    PubMed  CAS  Google Scholar 

  • Qiu J, Wang CG, Huang XY, Chen YZ (2003) Nongenomic mechanism of glucocorticoid inhibition of bradykinin-induced calcium influx in PC12 cells: possible involvement of protein kinase. C Li Sci 72:2533–2542

    Article  CAS  Google Scholar 

  • Reid SG, Bernier NJ, Perry SF (1998) The adrenergic stress response in fish: control of catecholamine storage and release. Comp Biochem Physiol C 120:1–27

    Article  PubMed  CAS  Google Scholar 

  • Shepherd S, Holzwarth M (1998) Frog chromaffin and adrenocortical cell co-cultures: a model for the study of medullary control of corticosteroidogenesis. J Neuroendocrinol 10:539–549

    Article  PubMed  CAS  Google Scholar 

  • Song L, Chen Y Z (1998) The rapid inhibitory effects of glucocorticoids on the secretion of catecholamine and intracellular calcium in stimulated adrenal medullary chromaffin cells in the rat. Chin J Neurosci 14:1–4

    CAS  Google Scholar 

  • Thurmond W, Kloas W, Hanke W (1986) Circadian rhythm of interrenal activity in Xenopus laevis. Gen Comp Endocrinol 61:260–271

    Article  PubMed  CAS  Google Scholar 

  • Wurtman RJ (1966) Control of epinephrine synthesis in the adrenal medulla by the adrenal cortex. Hormonal specificity and dose-responses characteristics. Endocrinol 79:608–614

    CAS  Google Scholar 

  • Wurtman RJ, Axelrod J, Vesell ES, Ross GT (1968) Species difference in inducibility of phenylethanolamine-N-methyl transferase. Endocrinol 82:584–590

    Article  CAS  Google Scholar 

  • Yonekubo K, Ohta T, Ito S (2003) Two distinct inhibitory actions of steroids on cholinoceptor-mediated secretion of catecholamine from guinea-pig adrenal medullary cells. Neurosci Lett 337:89–92

    Article  PubMed  CAS  Google Scholar 

  • Zerani M, Gobbetti A (1991) Effects of β-endorphin and naloxone on corticosterone and cortisol release in the newt (Triturus carnifex): studies in vivo and in vitro. J Endocrinol 131:295–302

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Tullio Criscuolo for assistance in the determination of serum aldosterone and catecholamine levels and Mr. Giuseppe Falcone for typing and for preparing the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Capaldo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capaldo, A., Gay, F., De Falco, M. et al. The adrenal gland of newt Triturus carnifex (Amphibia, Urodela) following in vivo betamethasone administration. Anat Embryol 211, 577–584 (2006). https://doi.org/10.1007/s00429-006-0096-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-006-0096-y

Keywords

Navigation