Skip to main content

Advertisement

Log in

The pituitary-adrenal axis of fetal rats after maternal dexamethasone treatment

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

Elevated glucocorticoid level in the gravid female circulation affects number of endocrine functions in fetuses and offspring. In this research female rats were injected with dexamethasone (Dx) in three consecutive daily doses of 1.0, 0.5, 0.5 mg/kg body weight, starting from day 16 of pregnancy. The influence of this treatment on the pituitary adrenocorticotrophic (ACTH) cells and adrenal glands of 19-day-old fetuses was examined immunocytochemically and by morphometric analysis. Moreover, the proliferative activity of adrenocortical cells was estimated after application of the mitotic inhibitor Oncovine. Administration of Dx to pregnant rats induced a decline of fetal ACTH cell immunopositivity and significant decreases of ACTH cell volume (23%, p<0.05), volume density (41%, p<0.05), and its number per unit area (17%, p<0.05) in comparison to the control 19-day-old fetuses. Reduced proliferative activity of adrenocortical cells (31%; p<0.05) in zona glomerulosa, as well as the volume of this zone were detected. The volume and number of fetal adrenocortical cells in the inner zone and chromoblasts were not significantly reduced after Dx treatment of pregnant rats. These results show that maternal Dx administration in the period when the fetal hypothalamo-pituitary-adrenal (PA) axis begins its function inhibited the PA axis. Reduced ACTH cell function and mitotic activity led to suppression of adrenocortical cell multiplication in zona glomerulosa, the region of the adrenal cortex where most proliferating cells were found in control 19-day-old fetuses. Thus, increased glucocorticoid levels during late pregnancy caused developmental modifications involving the fetal PA axis, which could be the basis of the altered endocrine responsiveness in adult life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bakker JM, van den Dobbelsteen GPJM, Kroes H, Kavelaars A, Heijnen CJ, Tilders FJH, van Rees EP (1998) Long-term gender-specific effects of manipulation during pregnancy on immune and endocrine responsiveness in rat offspring. J Neuroimmunol 82:56–63

    Article  PubMed  CAS  Google Scholar 

  • Barker DJP (1995) The fetal and infant origins of disease. Eur J Clin Invest 25:457–463

    Article  PubMed  CAS  Google Scholar 

  • Celsi G, Kistner A, Aizman R, Eklöf AC, Ceccatelli S, de Santiago A, Jacobson SH (1998) Prenatal dexamethasone causes oligonephronia, sodium retention, and higher blood pressure in the offspring. Pediatr Res 44:317–322

    Article  PubMed  CAS  Google Scholar 

  • Chatelain A, Cheong HS (1986) Immunoreactive forms of ACTH released by the adenohypophysis of the rat during the perinatal period in vivo and in vitro studies. J Physiol 81:361–367

    CAS  Google Scholar 

  • Chatelain A, Dupouy JP (1981) Adrenocorticotrophic hormone in the anterior and neurointermediate lobes of the fetal rat pituitary gland. J Endocrinol 89:181–186

    Article  PubMed  CAS  Google Scholar 

  • Childs GV, Rougeau D, Unabia G (1995) Corticotropin-releasing hormone and epidermal growth factor: mitogens for anterior pituitary corticotropes. Endocrinology 136:1595–1602

    Article  PubMed  CAS  Google Scholar 

  • Cintra A, Solfrini V, Bunnemann B, Okret S, Bortolotti F, Gustafsson JA, Fuxe K (1993) Prenatal development of glucocorticoid receptor gene expression and immunoreactivity in the rat brain and pituitary gland: a combined in situ hybridization and immunocytochemical analysis. Neuroendocrinology 57:1133–1147

    PubMed  CAS  Google Scholar 

  • Combs SE, Ernsberger U, Krieglstein K, Unsicker K (2001) Reduction of endogenous TGF-β does not affect phenotypic development of symphatoadrenal progenitors into adrenal chromaffin cells. Mech Dev 109:295–302

    Article  PubMed  CAS  Google Scholar 

  • De Kloet ER (1991) Brain corticosteroid receptor balance and homeostatic control. Front Neuroendocrinol 12:95–164

    Google Scholar 

  • De Kloet ER (2004) Hormones and the stressed brain. Ann NY Acad Sci 1018:1–15

    Article  PubMed  CAS  Google Scholar 

  • Ducsay CA (1998) Fetal and maternal adaptations to chronic hypoxia: prevention of premature labor in response to chronic stress. Comp Biochem Physiol 119:675–681

    Article  CAS  Google Scholar 

  • Feige JJ, Vilgrain I, Brand C, Bailly S, Souchelnitskiy S (1998) Fine tuning of adrenocortical functions by locally produced growth factors. J Endocrinol 158:7–19

    Article  PubMed  CAS  Google Scholar 

  • Flagel SB, Vazquez DM, Watson SJ Jr, Neal CR Jr (2002) Effects of tapering neonatal dexamethasone on rat growth, neurodevelopment, and stress response. Am J Physiol Regul Integr Comp Physiol 282:R55–R63

    PubMed  CAS  Google Scholar 

  • Fujioka T, Sakata Y, Yamaguchi K, Shibasaki T, Kato H, Nakamura S (1999) The effects of prenatal stress on the development of hypothalamic paraventricular neurons in fetal rats. Neuroscience 92:1079–1088

    Article  PubMed  CAS  Google Scholar 

  • Hristić M, Kalafatić D, Plećaš B, Jovanović V (1995) The effect of dexamethasone on the adrenal gland in fetal and neonatal rats. J Exp Zoolg 272:281–290

    Article  Google Scholar 

  • Hristić M, Kalafatić D, Plećaš B, Manojlović M (1997) The influence of prolonged dexamethasone treatment of pregnant rats on the perinatal development of the adrenal gland of their offspring. J Exp Zool 279:54–61

    Article  PubMed  Google Scholar 

  • Hu SB, Tannahill LA, Lightman SL (1992) Dexamethasone and aldosterone modulate corticotropin-releasing factor-41 release from cultured rat fetal hypothalamic cells through type II and type I corticosteroid receptors respectively. Neuroendocrinology 56:591–596

    PubMed  CAS  Google Scholar 

  • Kalafatić D, Plećaš B, Hristić M, Manojlović M (1998) Manipulation of prenatal blood glucocorticoid level affects development of the hypothalamic paraventricular nuclei in rats. Biomed Res 19:293–301

    Google Scholar 

  • Kalafatić D, Plećaš B, Hristić M, Manojlović SM, Čakić M (2000) The effects of repeated dexamethasone treatment of pregnant rats on the adrenocorticotropin plasma concentration and ACTH-cells in their offspring during the perinatal period. Arch Biol Sci 52:159–164

    Google Scholar 

  • Kim JB, Ju JY, Kim JH, Kim TY, Yang BH, Lee YS, Son H (2004) Dexamethasone inhibits proliferation of adult hippocampal neurogenesis in vivo and in vitro. Brain Res 1027:1–10

    Article  PubMed  CAS  Google Scholar 

  • Lesage J, Del-Favero F, Leonhardt M, Louvart H, Maccari S, Vieau D, Darnaudery M (2004) Prenatal stress induces intrauterine growth restriction and programmes glucose intolerance and feeding behaviour disturbances in the aged rat. J Endocrinol 181:291–296

    Article  PubMed  CAS  Google Scholar 

  • Lindsay RS, Lindsay RM, Edwards CR, Seckl JR (1996) Inhibition of 11-beta-hydroxysteroid dehydrogenase in pregnant rats and the programming of blood pressure in the offspring. Hypertension 27:1200–1204

    PubMed  CAS  Google Scholar 

  • Malendowicz LK (1974) Sex differences in adrenocortical structure and function. I. The effects of postpubertal gonadectomy and gonadal hormone replacement in nuclear volume of adrenocortical cells in the rat. Cell Tissue Res 151:525–536

    PubMed  CAS  Google Scholar 

  • Manojlović M, Hristić M, Kalafatić D, Plećaš B, Ugrešić N (1998) The influence of dexamethasone treatment of pregnant rats on the development of chromaffin tissue in their offspring during the fetal and neonatal period. J Endocrinol Invest 21:211–218

    PubMed  Google Scholar 

  • Manojlović Stojanoski M, Nestorović N, Filipović B, Milošević V (2004) ACTH-producing cells of 21-day-old rat fetuses after maternal dexamethasone exposure. Acta Histochem 106:199–205

    Article  PubMed  CAS  Google Scholar 

  • Mesiano S, Jaffe RB (1997) Development and functional biology of the primate fetal adrenal cortex. Endocr Rev 18:378–403

    Article  PubMed  CAS  Google Scholar 

  • Mitani F, Mukai K, Ogawa T, Miyamoto H, Ishimura Y (1997) Expression of cytochromes P450aldo and P45011 beta in rat adrenal gland during late gestational and neonatal stages. Steroids 62:57–61

    Article  PubMed  CAS  Google Scholar 

  • Mitani F, Mukai K, Miyamoto H, Suematsu M, Ishimura Y (1999) Development of functional zonation in the rat adrenal cortex. Endocrinology 140:3342–3353

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto H, Mitani F, Mukai K, Suematsu M, Ishimura Y (1999) Studies on cytogenesis in adult rat adrenal cortex. Circadian and zonal variations and their modulation by adrenocorticotropic hormone. J Biochem 126:1175–1183

    PubMed  CAS  Google Scholar 

  • Nemeskeri A, Setalo G, Halasz M (1988) The differentiation of three parts of the rat adenohypophysis. A detailed immunocytochemical study. Neuroendocrinology 48:534–543

    PubMed  CAS  Google Scholar 

  • Pratt L, Magness RR, Phernetton T, Hendricks SK, Abbott DH, Bird IM (1999) Repeated use of betamethasone in rabbits: effects of treatment variation on adrenal suppression, pulmonary maturation, and pregnancy outcome. Am J Obstet Gynecol 180:995–1005

    Article  PubMed  CAS  Google Scholar 

  • Rajadurai VS, Tan KH (2003) The use and abuse of steroids in perinatal medicine. Ann Acad Med Singapore 32:324–334

    PubMed  CAS  Google Scholar 

  • Reichardt HM, Schutz G (1996) Feedback control of gluccorticoid production is established during fetal development. Mol Med 2:735–744

    PubMed  CAS  Google Scholar 

  • Seckl JR (2001) Glucocorticoid programming of the fetus; adult phenotypes and molecular mechanisms. Mol Cell Endocrinol 185:61–71

    Article  PubMed  CAS  Google Scholar 

  • Seckl JR, Meaney MJ (2004) Glucocorticoid programming. Ann NY Acad Sci 1032:63–84

    Article  PubMed  CAS  Google Scholar 

  • Seidel K, Unsicker K (1989) The determination of the adrenal medullary cell fate during embryogenesis. Dev Biol 136:481–490

    Article  PubMed  Google Scholar 

  • Shen CN, Seckl JR, Slack JMW, Tosh D (2003) Glucocorticoids suppress β-cell development and induce hepatic metaplasia in embryonic pancreas. Biochem J 375:41–50

    Article  PubMed  CAS  Google Scholar 

  • Sinha P, Halasz I, Choi JF, Mcgivern RF, Redei E (1997) Maternal adrenalectomy eliminates a surge of plasma dehydroepiandrosterone in the mother and attenuates the prenatal testosterone surge in the male fetus. Endocrinology 138:4792–4797

    Article  PubMed  CAS  Google Scholar 

  • Sloboda DM, Moss TJ, Gurrin LC, Newnham JP, Challis JRG (2002) The effect of prenatal betamethasone administration on postnatal ovine hypothalamic-pituitary-adrenal function. J Endocrinol 172:71–81

    Article  PubMed  CAS  Google Scholar 

  • Sternberger LA, Hardy PH Jr, Cuculius JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    PubMed  CAS  Google Scholar 

  • Taniguchi Y, Kominami R, Yasutaka S, Kawarai Y (2000) Proliferation and differentiation of pituitary corticotrophs during the fetal and postnatal period: a quantitative immunocytochemical study. Anat Embryol 201:229–234

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi Y, Kominami R, Yasutaka S, Shinoara H (2001) Mitosis of existing corticotrophs contribute to their proliferation in the rat pituitary during the late fetal period. Anat Embryol 203:89–93

    Article  PubMed  CAS  Google Scholar 

  • Weibel E (1979) Stereological methods. Practical methods for biological morphometry, Vol. 1. Academic Press, New York pp 1–415

  • Wotus C, Levay-Young BK, Rogers LM, Gomez-Sanchez CE, Engeland WC (1998) Development of adrenal zonation in fetal rats defined by expression of aldosterone synthase and 11β-hydroxylase. Endocrinology 139:4397–4403

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Ministry for Science and Environmental Protection of Republic Serbia, Grant number 1710.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milica Manojlović Stojanoski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stojanoski, M.M., Nestorović, N., Negić, N. et al. The pituitary-adrenal axis of fetal rats after maternal dexamethasone treatment. Anat Embryol 211, 61–69 (2006). https://doi.org/10.1007/s00429-005-0057-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-005-0057-x

Keywords

Navigation