Skip to main content

Advertisement

Log in

Architecture and mineralization of developing cortical and trabecular bone of the mandible

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

Ossification of the presumptive trabecular bone in the mandibular condyle and the presumptive cortical bone in the mandibular corpus of the pig mandible was investigated during development, using micro-computed tomography (microCT). Three-dimensional architecture and mineralization characteristics were assessed from ten pigs of different developmental ages. In the condyle, increases in trabecular thickness and separation and a decrease in the trabecular number, led to an unchanged bone volume fraction. A conversion from rod-like into plate-like trabeculae was observed. Bone volume and trabecular thickness were always higher in the corpus, where an increase in bone volume fraction was caused by an increase in the trabecular thickness and a decrease in separation. A transition from a plate-like structure into a more compact structure took place. The average degree of mineralization in the condyle and the corpus increased with age. In the corpus, the degrees of mineralization were higher than in the condyle. The differences between the condyle and corpus and the changes with age could be explained by differences in the distribution of mineralization within the trabecular elements. Generally, the degrees of mineralization increased from the surface toward the centers of the trabecular elements, indicating growth of the trabecular elements by the surface apposition of new mineral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Boivin G, Meunier PJ (2002) Changes in bone remodeling rate influence the degree of mineralization of bone. Connect Tissue Res 43:535–537

    Article  PubMed  CAS  Google Scholar 

  • Burger EH, Klein-Nulend J, Veldhuijzen JP (1991) Modulation of osteogenesis in fetal bone rudiments by mechanical stress in vitro. J Biomech 24:101–109

    Article  PubMed  Google Scholar 

  • Cadet ER, Gafni RI, McCarthy EF, McCray DR, Bacher JD, Barnes KM, Baron J (2003) Mechanisms responsible for longitudinal growth of the cortex: coalescence of trabecular bone into cortical bone. J Bone Joint Surg 85:1739–1748

    PubMed  Google Scholar 

  • Cooper C, Javaid MK, Taylor P, Walker-Bone K, Dennison E, Arden N (2002) The fetal origins of osteoporotic fracture. Calcif Tissue Int 70:391–394

    Article  PubMed  CAS  Google Scholar 

  • Cooper DML, Matyas JR, Katzenberg MA, Hallgrimsson B (2004) Comparison of microcomputed tomographic and microradiographic measurements of cortical bone porosity. Calcif Tissue Int 74:437–447

    Article  PubMed  CAS  Google Scholar 

  • De Vries JIP, Visser GHA, Prechtl HFR (1985) The emergence of fetal behaviour. II. Quantitative aspects. Early Hum Dev 12:99–120

    Article  PubMed  Google Scholar 

  • Ding M (2000) Age variations in the properties of human tibial trabecular bone and cartilage. Acta Orthop Scand Suppl 292:1–45

    Article  PubMed  CAS  Google Scholar 

  • Evans HE, Sack WO (1973) Prenatal development of domestic and laboratory mammals: Growth curves, external features and selected references. Anat Histol Embryol 2:11–45

    Article  CAS  Google Scholar 

  • Ferguson C, Alpern E, Miclau T, Helms JA (1999) Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 87:57–66

    Article  PubMed  CAS  Google Scholar 

  • Follet H, Boivin G, Rumelhart C, Meunier PJ (2004) The degree of mineralization is a determinant of bone strength: a study on human calcanei. Bone 34:783–789

    Article  PubMed  CAS  Google Scholar 

  • Giesen EBW, van Eijden TMGJ (2000) The three-dimensional cancellous bone architecture of the human mandibular condyle. J Dent Res 79:957–963

    PubMed  CAS  Google Scholar 

  • Goret-Nicaise M (1981) Influence des insertions des muscles masticateurs sur la structure mandibulaire du nouveau-né. Bull Assoc Anat 65:287–296

    CAS  Google Scholar 

  • Goret-Nicaise M, Dhem A (1984) The mandibular body of the human fetus. Histologic analysis of the basilar part. Anat Embryol 169:231–236

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand T, Rüegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Engin 1:15–23

    Article  PubMed  Google Scholar 

  • Hodges PC (1953) Ossification in the fetal pig. A radiographic study. Anat Rec 116:315–326

    Article  PubMed  Google Scholar 

  • Javaid MK, Cooper C (2002) Prenatal and childhood influences on osteoporosis. Best Pract Res Clin Endocrinol Metab 16:349–367

    Article  PubMed  CAS  Google Scholar 

  • Lee SK, Kim YS, Oh HS, Yang KH, Kim EC, Chi JG (2001) Prenatal development of the human mandible. Anat Rec 263:314–325

    Article  PubMed  CAS  Google Scholar 

  • Leeson TS, Leeson CR (1970) Histology, 2nd edn. Saunders, Philadelphia, PA

    Google Scholar 

  • Meneghini C, Dalconi MC, Nuzzo S, Mobilio S, Wenk RH (2003) Rietveld refinement on X-ray diffraction patterns of bioapatite in human fetal bones. Biophys J 84:2021–2029

    PubMed  CAS  Google Scholar 

  • Meunier PJ, Boivin G (1997) Bone mineral density reflects bone mass but also the degree of mineralization of bone: therapeutic implications. Bone 21:373–377

    Article  PubMed  CAS  Google Scholar 

  • Mulder L, Koolstra JH, van Eijden TMGJ (2004) Accuracy of microCT in the quantitative determination of the degree and distribution of mineralization in developing bone. Acta Radiol 45:769–777

    Article  PubMed  CAS  Google Scholar 

  • Mulder L, Koolstra JH, Weijs WA, van Eijden TMGJ (2005) Architecture and mineralization of developing trabecular bone in the pig mandibular condyle. Anat Rec 285:659–667

    Article  Google Scholar 

  • Müller R, van Campenhout H, van Damme B, van der Perre G, Dequeker J, Hildebrand T, Rüegsegger P (1998) Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 23:59–66

    Article  PubMed  Google Scholar 

  • Nafei A, Kabel J, Odgaard A, Linde F, Hvid I (2000) Properties of growing trabecular ovine bone. Part II:architectural and mechanical properties. J Bone Joint Surg Br 82:921–927

    Article  PubMed  CAS  Google Scholar 

  • Nuzzo S, Peyrin F, Cloetens P, Baruchel J, Boivin G (2002) Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation microtomography. Med Phys 29:2672–2681

    Article  PubMed  Google Scholar 

  • Nuzzo S, Meneghini C, Braillon P, Bouvier R, Mobilio S, Peyrin F (2003) Microarchitectural and physical changes during fetal growth in human vertebral bone. J Bone Miner Res 18:760–768

    Article  PubMed  CAS  Google Scholar 

  • Radlanski RJ, Renz H, Klarkowski MC (2003) Prenatal development of the human mandible. 3D reconstructions, morphometry and bone remodeling pattern, sizes 12–117 mm CRL. Anat Embryol 207:221–232

    Article  PubMed  Google Scholar 

  • Rüegsegger P, Koller B, Müller R (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58:24–29

    Article  PubMed  Google Scholar 

  • Tanck E, Homminga J, van Lenthe GH, Huiskes R (2001) Increase in bone volume fraction precedes architectural adaptation in growing bone. Bone 28:650–654

    Article  PubMed  CAS  Google Scholar 

  • Tanck E, Hannink G, Ruimerman R, Buma P, Burger EH, Huiskes R (2004) Cortical bone development under the growth plate is regulated by mechanical load transfer. Proceedings of ESB 2004, ‘s-Hertogenbosch, The Netherlands

  • Teng S, Herring SW (1995) A stereological study of the trabecular architecture in the mandibular condyle of the pig. Arch Oral Biol 40:299–310

    Article  PubMed  CAS  Google Scholar 

  • Van Eijden TMGJ (2000) Biomechanics of the mandible. Crit Rev Oral Biol Med 11:123–136

    Article  PubMed  Google Scholar 

  • Van Ruijven LJ, Giesen EBW, van Eijden TMGJ (2002) Mechanical significance of the trabecular microstructure of the human mandibular condyle. J Dent Res 81:706–710

    PubMed  Google Scholar 

  • Wachter NJ, Augat P, Krischak GD, Mentzel M, Kinzl L, Claes L (2001) Prediction of cortical bone porosity in vitro by microcomputed tomography. Calcif Tissue Int 68:38–42

    Article  PubMed  CAS  Google Scholar 

  • Wissmer A (1927) Le développement et l’organisation statique le la mandibule foetale chez l’homme. Arch Anat 7:335–425

    Google Scholar 

Download references

Acknowledgements

Appreciation goes out to Henk van Dijk from the Division of Veterinary Anatomy and Physiology, Department Pathobiology, School of Veterinary Medicine, University of Utrecht, The Netherlands, for providing the specimens and to Geerling Langenbach for critically reading the manuscript. This research was institutionally supported by the Inter-University Research School of Dentistry, through the Academic Centre for Dentistry Amsterdam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Mulder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulder, L., Koolstra, J.H., de Jonge, H.W. et al. Architecture and mineralization of developing cortical and trabecular bone of the mandible. Anat Embryol 211, 71–78 (2006). https://doi.org/10.1007/s00429-005-0054-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-005-0054-0

Keywords

Navigation