Skip to main content

Advertisement

Log in

Vertebrate limb development: from Harrison’s limb disk transplantations to targeted disruption of Hox genes

  • Review
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

Various animal organs have long been used to investigate the cellular and molecular nature of embryonic growth and morphogenesis. Among those organs, the tetrapod limb has been preferentially used as a model system for elucidating general patterning mechanisms. At the appropriate time during the embryonic period, the limb territories are first determined at the right positions along the cephalocaudal axis of the animal body, and soon the limb buds grow out from the flanks as mesenchymal cell masses covered by simple ectoderm. The position, number, and identity of the limbs depend on the expression of specific Hox genes. Limb morphogenesis occurs along three axes, which become gradually fixed: first the anteroposterior axis, then the dorsoventral, and finally the proximodistal axis, along which the bulk of limb growth occurs. Growth of the limb in amniotes depends on the formation of the apical ectodermal ridge, which, by secreting many members of the fibroblast growth factors family, attracts lateral plate and somitic mesodermal cells, keeps these cells in the progress zone proliferating, and prevents their differentiation until an appropriate time period. Mutual interactions between mesoderm and ectoderm are important in the growth process, and signaling regions have been identified, such as the zone of polarizing activity, the dorsal limb ectoderm, and the apical ectodermal ridge. Several molecules have been found to play leading roles in various biological processes relevant to morphogenesis. Besides its intrinsic merit as a model for unraveling the mechanisms of development, the limb deserves considerable clinical interest because defects of limb development are the most common single category of congenital abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 a
Fig. 3
Fig. 4
Fig. 5
Fig. 6 a

Similar content being viewed by others

References

  • Abercrombie M (1961) Ross Granville Harrison. Biographical Memoirs of Fellows of the Royal Society 7:111–126

    Google Scholar 

  • Agarwal P, Wylie JN, Galceran J, Arkhito O, Li C, Deng C, Grosschedl R, Bruneau BG (2003) Tbx5 is essential for forelimb bud initiation following patterning of the limb field in the mouse embryo. Development 130:623–633

    Article  CAS  PubMed  Google Scholar 

  • Altizer AM, Moriarty LJ, Bell SM, Schreiner CM, Scott WJ, Borgens RB (2001) Endogenous electric current is associated with normal development of the vertebrate limb. Dev Dyn 221:391–401

    Article  CAS  PubMed  Google Scholar 

  • Anderson R, Landry M, Reginelli A, Taylor G, Achkar C, Gudas L, Muneoka K (1994) Conversion of anterior limb bud cells to ZPA signalling cells in vitro and in vivo. Dev Biol 164:241–257

    Article  CAS  PubMed  Google Scholar 

  • Aono H, Ide H (1988) A gradient of responsiveness to the growth-promoting activity of ZPA (zone of polarizing activity) in the chick limb bud. Dev Biol 128:136–141

    Article  CAS  PubMed  Google Scholar 

  • Armstrong JB, Malacinski GM (1989) Developmental biology of the axolotl. Oxford, University Press

  • Balemans W, Van Hul W (2002) Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev Biol 250:231–250

    Article  CAS  PubMed  Google Scholar 

  • Barrow JR, Thomas KR, Boussadia-Zahui, Moore R, Kemler R, Capecchi MR, McMahon AP (2003) Ectodermal Wnt3/beta-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev 17:394–409

    Article  CAS  PubMed  Google Scholar 

  • Beauchemin M, Del Rio-Tsonis K, Tsonis PA, Tremblay M, Savard P (1998) Graded expression of Emx2 in the adult newt limb and its corresponding regeneration blastema. J Mol Biol 279:501–511

    Article  CAS  PubMed  Google Scholar 

  • Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C (1995) Essential role of c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376:768

    Article  CAS  PubMed  Google Scholar 

  • Bordzilovskaja NP, Dettlaff TA (1979) Table of stages of the normal development of axolotl embryos and the prognostication of timing of successive developmental stages at various temperatures. Axolotl Newsletter 7:2–22

    Google Scholar 

  • Borgens RB, Rouleau MF, DeLanney LE (1983) A steady efflux of ionic current predicts hindlimb development in the axolotl. J Exp Zool 228:491–503

    CAS  PubMed  Google Scholar 

  • Brand-Saberi B, Krenn V, Christ B (1989) The control of directed myogenic cell migration in the avian limb bud. Anat Embryol (Berl) 180:555–566

    Google Scholar 

  • Bryant SV, Gardiner DM (1993) Retinoic acid and limb pattern formation. Prog Clin Biol Res 383B:759–768

    CAS  PubMed  Google Scholar 

  • Carlson BM (1975) The effect of rotation and positional change of stump tissues upon morphogenesis of the regenerating axolotl limb. Dev Biol 47:269–291

    Article  CAS  PubMed  Google Scholar 

  • Carrington JL, Fallon JF (1988) Initial limb budding is independent of apical ectodermal ridge activity: evidence from a limbless mutant. Development 104:361–367

    CAS  PubMed  Google Scholar 

  • Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10:940–954

    CAS  PubMed  Google Scholar 

  • Chen H, Johnson RL (1999) Dorsoventral patterning of the vertebrate limb: A process governed by multiple events. Cell Tissue Res 296:67–73

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Johnson RL (2002) Interactions between dorsal-ventral patterning genes Lmx1b, engrailed-1 and Wnt7a in the vertebrate limb. Int J Dev Biol 46:937–941

    CAS  PubMed  Google Scholar 

  • Chen Y, Dong D, Kostetskii I, Zile MH (1996) Hensen’s node from vitamin A-deficient quail embryo induces chick limb bud duplication and retains its normal asymmetric expression of Sonic hedgehog (Shh). Dev Biol 173:256–264

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhao X (1998) Shaping limb by apoptosis. J Exp Zool 282:691–702

    Article  CAS  PubMed  Google Scholar 

  • Chiang C, Litingtung Y, Harris MP, Simandl BK, Li Y, Beachy PA, Fallon JF (2001) Manifestation of the limb prepattern: limb development in the absence of sonic hedgehog function. Dev Biol 236:421–435

    Article  PubMed  Google Scholar 

  • Cohn MJ, Tickle C (1999) Developmental basis of limblessness and axial patterning in snakes. Nature 399:474–479

    Article  PubMed  Google Scholar 

  • Conrad M, Brielmeier M, Wurst W, Bornkamm GW (2003) Optimized vector for conditional gene targeting in mouse embryonic stem cells. Biotechniques 34:1136–1138, 1140

    PubMed  Google Scholar 

  • Cooke J, Summerbell D (1980) Cell cycle and experimental pattern duplication in the chick wing during embryonic development. Nature 287:697–701

    PubMed  Google Scholar 

  • Cooper M, Porter J, Young K, Beachy P (1998) Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280:1603–1607

    Article  PubMed  Google Scholar 

  • Crawford M (2003) Hox genes as synchronized temporal regulators: implications for morphological innovation. J Exp Zoolog Part B Mol Dev Evol 295:1–11

    PubMed  Google Scholar 

  • Crossley PH, Minowaqda G, McArthur CA, Martin GR (1996) Roles for FGF8 in the induction and maintenance of chick limb development. Cell 84:127–136

    Article  CAS  PubMed  Google Scholar 

  • Cygan JA, Johnson RL, McMahon AP (1997) Novel regulatory interactions revealed by studies of murine limb pattern in Wnt7a and En1 mutants. Development 124:5021–5032

    PubMed  Google Scholar 

  • Daston G, Lamar E, Olivier M, Goulding M (1996) Pax3 is necessary for migration but not differentiation of limb muscle precursor in the mouse. Development 122:1017–1027

    CAS  PubMed  Google Scholar 

  • Davis AP, Witte DP, Hsieh-Li HM, Potter SS, Capecchi MR (1995) Absence of radius and ulna in mice lacking Hoxa11 and Hoxd11. Nature 375:791–795

    Article  CAS  PubMed  Google Scholar 

  • Drossopoulou G, Lewis KE, Sanz-Ezquerro JJ, Nikbakht N, McMahon AP, Hofmann C, Tickle C (2000) A model for anteroposterior patterning of the vertebrate limb based on sequential long-and short-range Shh signalling and Bmp signalling. Development 127:1337–1348

    CAS  PubMed  Google Scholar 

  • Dupé V, Ghyselinck NB, Thomazy V, Nagy L, Davies PJA, Chambon P, Mark M (1999) Essential roles of retinoic acid signalling in interdigital apoptosis and control of BMP-7 expression in mouse autopods. Dev Biol 208:30–43

    Article  PubMed  Google Scholar 

  • Ettinger L, Doljanski F (1992) On the generation of form by the continuous interactions between the cells and their external matrix. Biol Rev Camb Philos Soc 67:459–489

    CAS  PubMed  Google Scholar 

  • Fromental-Ramain C, Warot X, Messadecq N, LeMeur M, Dolle P, Chambon P (1996) Hoxa13 and Hoxd13 play a crucial role in the patterning of the limb autopod. Development 122:2997–3011

    CAS  PubMed  Google Scholar 

  • Géraudie J, Ferretti P (1998) Gene expression during amphibian limb regeneration. Intern Rev Cytol 180:1–50

    Google Scholar 

  • Gilbert SF (2003) Developmental biology, 7th edn. Sinauer, Sunderland, MA

  • Gudas LJ (1994) Retinoids and vertebrate development. J Biol Chem 269:15399–15402

    CAS  PubMed  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Google Scholar 

  • Harrison RG (1918) Experiments on the development of the forelimb of Amblystoma; a self-differentiating, equipotential system. J Exp Zool 25:413–461

    Google Scholar 

  • Harrison RG (1921) On relations of symmetry in transplanted limbs. J Exp Zool 32:1

    Google Scholar 

  • Hinrichsen KV, Jacob HJ, Jacob M, Brand-Saberi B, Christ B, Grim M (1994) Principles of ontogenesis of leg and foot in man. Anat Anz 176:121–130

    CAS  PubMed  Google Scholar 

  • Honig LS, Summerbell D (1985) Maps of strength of positional signaling activity in the developing chick wing bud. J Embryol Exp Morphol 87:167–174

    Google Scholar 

  • Itoh N, Mima T, Mikawa T (1996) Loss of fibroblast growth factor receptors is necessary for differentiation of embryonic limb muscle. Development 122:291–300

    CAS  PubMed  Google Scholar 

  • Kieny M, Chevallier A (1979) Autonomy of tendon development in the embryonic chick wing. J Embryol Exp Morphol 49:153–165

    CAS  PubMed  Google Scholar 

  • Knezevic V, Ranson M, Mackem S (1995) The organizer-associated chick homeobox gene, Gnot1, is expressed before gastrulation and regulated synergistically by activin and retinoic acid. Dev Biol 171:458–470

    Article  CAS  PubMed  Google Scholar 

  • Koussoulakos S, Anton HJ (1992) Vitamin A as a probe for investigating growth, differentiation and morphogenesis. Biol Bull 18:313–331

    Google Scholar 

  • Koussoulakos S, Sharma KK, Anton HJ (1990) Effect of vitamin A on wound epidermis during forelimb regeneration in adult newts. Int J Dev Biol 34:433–439

    CAS  PubMed  Google Scholar 

  • Krumlauf R (1994) Hox genes in vertebrate development. Cell 78:191–201

    Article  CAS  PubMed  Google Scholar 

  • Langston AW, Gudas LJ (1994) Retinoic acid and homeobox gene regulation. Curr Opin Genet Dev 4:550–555

    Article  CAS  PubMed  Google Scholar 

  • Lewandoski M, Sun X, Martin GR (2000) Fgf8 signalling from the AER is essential for normal limb development. Nat Genet 26:460–463

    Article  CAS  PubMed  Google Scholar 

  • Lewis PM, Dunn MP, McMahon JA, Logan M, Martin JF, St-Jacques B, Mc Mahon AP (2001) Cholesterol modification of sonic hedgehog is required for long-range signalling activity and effective modulation of signalling by Ptc1. Cell 105:599

    Article  CAS  PubMed  Google Scholar 

  • Li S, Muneoka K (1999) Cell migration and chick limb development: chemotactic action of FGF4 and AER. Dev Biol 211:335–347

    Article  CAS  PubMed  Google Scholar 

  • Logan C, Hornbruch A, Campell I, Lumsden A (1997) The role of Engrailed in establishing the dorsoventral axis of the chick. Development 124:2317–2324

    CAS  PubMed  Google Scholar 

  • Mabee PM (2000) The usefulness of ontogeny in interpreting morphological characters. In: Wiens J (ed) Phylogenetic analysis of morphological data. Smithsonian Press, Washington, pp 84–114

  • Maden M (1982) Vitamin A and pattern formation in the regenerating limb. Nature 295:672–675

    CAS  PubMed  Google Scholar 

  • Maden M (1984) Does vitamin A act on pattern formation via the epidermis or the mesenchyme? J Exp Zool 230:387–392

    CAS  Google Scholar 

  • Maden M, Ong DE, Summerbell D, Chytil F (1989) The role of retinoid binding proteins in the generation of pattern in the developing limb, the regenerating limb and the nervous system. Development 107(suppl):109–119

    CAS  PubMed  Google Scholar 

  • Martin GM (1998) The roles of FGFs in the early development of vertebrate limbs. Genes Dev 12:1571–1576

    CAS  PubMed  Google Scholar 

  • McCabe JA, Errick J, Saunders JW Jr (1974) Ectodermal control of the dorsoventral axis in the leg bud of the chick embryo. Dev Biol 39:69–82

    PubMed  Google Scholar 

  • Means AL, Gudas LJ (1995) The roles of retinoids in vertebrate development. Annu Rev Biochem 64:201–233

    Article  CAS  PubMed  Google Scholar 

  • Mercader N, Leonardo E, Piedra ME, Martinez AC, Ros MA, Tores M (2000) Opposing RA and FGF signals control proximodistal vertebrate limb development through regulation of Meis genes. Development 127:3961–3970

    CAS  PubMed  Google Scholar 

  • Michaud JL, Lapointe F, Le Douarin NM (1997) The dorsoventral polarity of the presumptive limb is determined by signals produced by the somites and by the lateral somatopleure. Development 124:1453–1463

    CAS  PubMed  Google Scholar 

  • Mullen LM, Bryant SV, Torok MA, Blumberg B, Gardiner DM (1996) Nerve dependency of regeneration: the role of distal-less and FGF signalling in amphibian limb regeneration. Development 122:3487–3497

    CAS  PubMed  Google Scholar 

  • Niazi IA, Saxena S (1978) Abnormal hindlimb regeneration in tadpoles of the toad Bufo andersonii exposed to excess vitamin A. Folia Biol (Krakow) 26:3–8

    Google Scholar 

  • Niederreiter K, Subbarayan V, Dolle P, Chambon P (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21:444–448

    Article  PubMed  Google Scholar 

  • Niswander L (2002) Interplay between the molecular signals that control vertebrate limb development. Int J Dev Biol 46:877–881

    CAS  PubMed  Google Scholar 

  • Niswander L (2003) Pattern formation: old models out on a limb. Nat Rev Genet 4:133–143

    Article  CAS  PubMed  Google Scholar 

  • Niswander L, Tickle C, Vogel A, Booth I, Martin G (1993) FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 75:579–587

    Article  CAS  PubMed  Google Scholar 

  • Niswander L, Jeffrey S, Martin GR, Tickle C (1994) A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371:609–612

    Article  CAS  PubMed  Google Scholar 

  • Ohuchi H, Nakagawa T, Yamamoto A, Araga A, Ohata T, Ishimaru Y, Yoshioka H, Kuwana T, Nohno T, Yamasaki M, Itoh N, Noji S (1997) The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124:2235–2244

    CAS  PubMed  Google Scholar 

  • O’Rahilly R, Müller F (1987) Developmental stages in human embryos. Carnegie Institution of Washington, Washington, DC, publication 637

  • Panganiban G, Irvine SM, Lowe C, Roehl H, Corley LS, Sherbon B, Grenier JK, Fallon JF, Kimble J, Walker M, Wray GA, Swalla BJ, Martindale MQ, Carrol SB (1997) The origin and evolution of appendages. Proc Natl Acad Sci USA 94:5162–5166

    Article  CAS  PubMed  Google Scholar 

  • Parr BA, McMahon AP (1995) Dorsalizing signal Wnt7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 374:350–353

    Article  CAS  PubMed  Google Scholar 

  • Pendick D (1998) When life got legs. Earth Aug. 1998:26–33

  • Pizette S, Abate-Shen C, Niswander L (2001) BMP controls proximodistal outgrowth via induction of the apical ectodermal ridge, and dorsoventral patterning in the vertebrate limb. Development 128:4463–4474

    CAS  PubMed  Google Scholar 

  • Ranson M, Tickle C, Mahon KA, Mackem S (1995) Gnot1, a member of a new homeobox gene subfamily, is expressed in a dynamic, region-specific domain along the proximodistal axis of the developing limb. Mech Dev 51:17–30

    Article  CAS  PubMed  Google Scholar 

  • Rawls A, Olson EN (1997) MyoD meets its maker. Cell 89:5–8

    Article  CAS  Google Scholar 

  • Reiter RS, Solursh M (1982) Mitogenic property of the apical ectodermal ridge. Dev Biol 93:28–35

    CAS  PubMed  Google Scholar 

  • Riddle R, Johnson R, Laufer E, Tabin C (1993). Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75:1401–1416

    CAS  PubMed  Google Scholar 

  • Robledo RF, Rajan L, Li X, Lufkin T (2002) The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev 16:1089

    Article  CAS  PubMed  Google Scholar 

  • Ros MA, López-Martinez A, Simandl BK, Rodriguez C, Izpizúa-Belmonté J-C, Dahn R, Fallon JF (1996) The limb field mesoderm determines initial limb bud anteroposterior asymmetry and budding independent of sonic hedgehog or apical ectodermal gene expression. Development 12:2319–2330

    Google Scholar 

  • Sandell LJ, Adler P (1999) Developmental patterns of cartilage. Front Biosci 4:731–742

    Google Scholar 

  • Saunders JW Jr (1948) The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J Exp Zool 282:628–668

    Article  Google Scholar 

  • Saunders JW Jr (1972) Developmental control of three-dimensional polarity in the avian limb. Ann NY Acad Sci 193:29–47

    PubMed  Google Scholar 

  • Schaller SA, Li S, Ngo-Muller V, Han MJ, Omi M, Anderson R, Muneoka K (2001) Cell biology of limb patterning. Intern Rev Cytol 203:483–517

    CAS  Google Scholar 

  • Schilephake H (2002) Bone growth factors in maxillofacial skeletal reconstruction. Int J Oral Maxillofac Surg 31:469–484

    Article  CAS  PubMed  Google Scholar 

  • Searls RL, Janner M (1971) The initiation of limb bud outgrowth in the embryonic chick. Dev Biol 24:198–213

    CAS  PubMed  Google Scholar 

  • Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, Kato S (1999) Fgf10 is essential for limb and lung formation. Nat Genet 21:138–141

    Article  CAS  PubMed  Google Scholar 

  • Shubin N, Tabin C, Carroll S (1997) Fossils, genes and the evolution of animal limbs. Nature 388:639–648

    Article  CAS  PubMed  Google Scholar 

  • Slack JMW (1976) Determination and polarity in the amphibian embryo. Nature 261:44–46

    CAS  PubMed  Google Scholar 

  • Slack JMW (1980) Regulation and potency in the forelimb rudiment of the axolotl embryo. J Embryol Exp Morphol 57:203–217

    CAS  PubMed  Google Scholar 

  • Stephens TD, Baker WC, Cotterell JW, Edwards DR, Pugmire DS, Roberts SG, Shaker MR, Willis HJ, Winker KP (1993) Evaluation of the chick wing territory as an equipotential self-differentiating system. Dev Dyn 197:157–168

    CAS  PubMed  Google Scholar 

  • Stocum DL, Fallon JF (1982) Control of pattern formation in urodele limb ontogeny: a review and a hypothesis. J Embryol Exp Morphol 69:7–36

    CAS  PubMed  Google Scholar 

  • Stratford TH, Horton C, Maden M (1996) Retinoic acid is required for the initiation of outgrowth in the chick limb bud. Curr Biol l6:1124–1133

    Article  Google Scholar 

  • Summerbell D (1974) Interaction between the proximal-distal and antero-posterior coordinates of positional value during the specification of positional information in the early development of the chick limb bud. J Embryol Exp Morphol 32:227–237

    CAS  PubMed  Google Scholar 

  • Swett FH (1937) Determination of limb axes. Q Rev Biol 12:322–339

    Article  Google Scholar 

  • Tabin C (1998) A developmental model for thalidomide defects. Nature 26:322–323

    Article  Google Scholar 

  • Tajbakhsh S, Buckingham ME (1994) Mouse limb muscle is determined in the absence of the earliest myogenic factor myf5. Proc Natl Acad USA 91:747–751

    CAS  Google Scholar 

  • Takahashi M, Tamura K, Büscher D, Masuya H, Yonei-Tamura S, Matsumoto K, Naitoh-Matsuo M, Takeuchi J, Ogura K, Shiroishi T, Ogura T, Izpizúa-Belmonté JC (1998) The role of Alx4 in the establishment of anteroposterior polarity during vertebrate limb development. Development 125:4417–4425

    CAS  PubMed  Google Scholar 

  • Thaller C, Eichele G (1987) Identification and spatial distribution of retinoids in the developing chick limb bud. Nature 327:625–628

    Article  CAS  PubMed  Google Scholar 

  • Thoms SD, Fallon JF (1980) Pattern regulation and the origin of extra parts following axial misalignments in the urodele limb bud. J Embryol Exp Morphol 60:33–55

    CAS  PubMed  Google Scholar 

  • Tickle C (1981) The number of polarizing region cells required to specify additional digits in the developing chick wing. Nature 289:295–298

    CAS  PubMed  Google Scholar 

  • Tickle C, Alberts B, Wolpert L, Lee J (1982) Local application of retinoic acid to the limb bud mimics the action of the polarizing region. Nature 296:564–566

    CAS  PubMed  Google Scholar 

  • Tickle C (2003) Patterning systems—from one end of the limb to the other. Dev Cell 4:449–458

    Article  CAS  PubMed  Google Scholar 

  • Vogel A, Rodriguez C, Izpisúa-Belmonté J-C (1996) Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122:1737–1750

    CAS  PubMed  Google Scholar 

  • Wang B, Fallon JF, Beachy PA (2000) Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100:423–434

    Article  CAS  PubMed  Google Scholar 

  • Wang YQ, Sassoon D (1995) Ectodermal-mesenchyme and mesenchyme-mesenchyme interactions regulate Msx1 expression and cellular differentiation in murine limb bud. Dev Biol 168:374–382

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Duprez D, Monsoro-Burq A, Vincent C, Le Douarin M (1998) Two domains in vertebral development: antagonistic regulation by SHH and BMP4 proteins. Development 125:2631–2639

    CAS  PubMed  Google Scholar 

  • te Welscher P, Zunica A, Kuijper S, Drenth T, Goedemans HJ, Meijlink F, Zeller R (2002) Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science 298:827–830

    Article  PubMed  Google Scholar 

  • Wolpert L (1971) Positional information and pattern formation. Current Topics in Dev Biol 6:183–224

    CAS  Google Scholar 

  • Wolpert L, Lewis J, Summerbell D (1975) Morphogenesis of the vertebrate limb. Ciba Foundation Symposium 29:95–130

    PubMed  Google Scholar 

  • Wolpert L, Beddington R, Brockes J, Jessel P, Lawrence E, Meyerowitz E (1998) Principles of development. Current Biology, London

  • Xu X, Weinstein M, Li C, Naski M, Cohen RI, Ornitz DM, Leder P, Deng C (1998) Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 125:753–765

    CAS  PubMed  Google Scholar 

  • Yang Y, Niswander L (1995) Interaction between the signaling molecules WNT7a and SHH during vertebrate limb development: dorsal signals regulate anteroposterior patterning. Cell 80:939–947

    Article  CAS  PubMed  Google Scholar 

  • Zeller R, Braun T (1999) Molecular basis of limb and muscle development. Cell Tissue Res 296:1–220

    Article  CAS  PubMed  Google Scholar 

  • Zuniga A, Zeller R (1999) Gli3 (Xt) and formin (ld) participate in the positioning of the polarising region and control of posterior limb-bud identity. Development 126:13–21

    CAS  PubMed  Google Scholar 

  • Zwilling E (1955) Ectoderm-mesoderm relationship in the development of the chick embryo limb bud. J Exp Zool 128:423–441

    Google Scholar 

  • Zwilling E (1961) Limb morphogenesis. Adv Morphogen 1:301–330

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the General Secretariat for Research and Technology of Greece (No. 70/3/6345) and the Special Account for Research Grants from the University of Athens (No. 70/4/5709).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stauros Koussoulakos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koussoulakos, S. Vertebrate limb development: from Harrison’s limb disk transplantations to targeted disruption of Hox genes. Anat Embryol 209, 93–105 (2004). https://doi.org/10.1007/s00429-004-0436-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-004-0436-8

Keywords

Navigation