Skip to main content
Log in

The development of adrenal homolog of rainbow trout Oncorhynchus mykiss: an immunohistochemical and ultrastructural study

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

In this work we describe the adrenal homolog of the rainbow trout Oncorhynchus mykiss during development. At the histological level, the interrenal primordium is clearly evident in larvae 25 days after fertilization (dpf), and the immunohistochemical reactions for tyrosine hydroxylase (TH) and phenylethanolamine-N-methyltransferase (PNMT), which mark the chromaffin cells, appear as early as 27 dpf. Both reactions are evident in cells localized in the head kidney and in some, probably migrating, cells close to the notochord. In 27-dpf larvae, the ultrastructural analysis shows the presence of the interrenal cells with mitochondria with tubulovesicular cristae, typical of steroidogenic cells, sometimes surrounded by smooth endoplasmic reticulum (SER) cisternae, indicating that in this stage the cells have the capacity for steroid synthesis and secretion. In the same stage the chromaffin cells are characterized by few and small membrane-bound granules containing cores of heterogeneous electron density. Both types of cells show large nuclei, numerous free or clumped ribosomes, developed rough endoplasmic reticulum (RER), and scarce SER. Rare nerve endings contacting chromaffin cells are present. In the subsequent developmental stages, a further differentiation of both types of cells is evidenced by modifications of cell organelles as mitochondria, chromaffin granules, RER, SER, and so on. A clear discrimination of the two types of catecholamine-containing cells, adrenaline and noradrenaline cells, is evident only 5 days after hatching. The presence of different interrenal cell types in larvae at 5 and 10 days after hatching probably indicates the activation of a physiological cellular cycle. The immunohistochemical and ultrastructural results are compared with those obtained by other authors in the same and other vertebrate species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6
Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11
Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19
Fig. 20 Fig. 21 Fig. 22 Fig. 23 Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Accordi F, Grassi Milano E (1977) Catecholamine-secreting cells in the adrenal gland of Bufo bufo during metamorphosis and in the adult. Gen Comp Endocrinol 33:187–195

    CAS  PubMed  Google Scholar 

  • Accordi F, Mastrolia L, Grassi Milano E, Manelli H (1975) Electron microscopic observations of adrenal chromaffin cells in the frog Rana esculenta during embryonal development and metamorphosis. Riv Biol 68:155–163

    Google Scholar 

  • An M, Luo R, Henion PD (2002) Differentiation and maturation of zebrafish dorsal root and sympathetic ganglion neurons. J Comp Neurol 446:267–275

    Article  PubMed  Google Scholar 

  • Barry TP, Malison JA, Held JA, Parrish JJ (1995a) Ontogeny of the cortisol stress response in larval rainbow trout. Gen Comp Endocrinol 97:57–65

    Article  CAS  PubMed  Google Scholar 

  • Barry TP, Ochiai M, Malison JA (1995b) In vitro effects of ACTH on interrenal corticosteroidogenesis during early larval development in rainbow trout. Gen Comp Endocrinol 99:328–387

    Article  Google Scholar 

  • Boshier DP, Halloway H (1991) Morphometric analyses of adrenal gland growth in fetal and neonatal sheep. III. Volumes of the major organelles within zona fasciculata steroidogenic cells. J Anat 178:175–187

    CAS  PubMed  Google Scholar 

  • Boshier DP, Gavin CB, Halloway H (1989) Morphometric analyses of adrenal gland growth in fetal and neonatal sheep. II. The adrenal medulla, with some observations on its ultrastructure. J Anat 167:15–30

    CAS  PubMed  Google Scholar 

  • Boshier DP, Halloway H, Liggins GC (1980) Growth and cytodifferentiation of the fetal lamb adrenal cortex prior to parturition. J Anat 130:97–111

    CAS  PubMed  Google Scholar 

  • Chai C, Liu Y-W, Chan W-K (2003) ff1b is required for the development of steroidogenic component of the zebrafish interrenal organ. Develop Biol 260:226–244

    Article  CAS  PubMed  Google Scholar 

  • Chen-Pan C, Pan I-J, Yamamoto Y, Sakogawa T, Yamada J, Hayashi Y (1999) Prompt recovery of damaged adrenal medulla induced by salinomycin. Toxicol Pathol 27:563–572

    CAS  PubMed  Google Scholar 

  • Civinini A, Padula D, Gallo VP (2001) Ultrastructural and histochemical study on the interrenal cells of the male stickleback (Gasterosteus aculeatus, Teleostea), in relation to the reproductive annual cycle. J Anat 199:303–316

    Article  CAS  PubMed  Google Scholar 

  • Coffigny H, Dupouy J-P (1978) The fetal adrenals of the rat: correlation between the growth, cytology, and hormonal activity, with and without ACTH deficiency. Gen Comp Endocrinol 34:312–322

    CAS  PubMed  Google Scholar 

  • Coupland RE, Weakley BS (1968) Developing chromaffin tissue in the rabbit: an electron microscopic study. J Anat 102:425–455

    CAS  PubMed  Google Scholar 

  • Daikoku S, Kinutani M, Sako M (1977) Development of the adrenal medullary cells in rats with reference to synaptogenesis. Cell Tissue Res 179:77–86

    CAS  PubMed  Google Scholar 

  • El-Maghraby M, Lever JD (1980) Typification and differentiation of medullary cells in the developing rat adrenal. A histochemical and electron microscopic study. J Anat 131:103–120

    CAS  PubMed  Google Scholar 

  • Fishelson L (1996) Ontogenesis and functional metamorphosis of the head-kidney in bottomspawner and mouthbrooder cichlid fishes (Cichlidae, Teleostei). J Morphol 229:1–21

    Google Scholar 

  • Gallo VP, Civinini A (2001) Immunohistochemical localization of nNOS in the head kidney of larval and juvenile rainbow trout Oncorhynchus mykiss. Gen Comp Endocrinol 124:21–29

    Article  CAS  PubMed  Google Scholar 

  • Gallo VP, Civinini A (2003) Survey of the adrenal homolog in teleosts. Int Rev Cytol 230:89–187

    CAS  PubMed  Google Scholar 

  • Gallo VP, Abelli L, Civinini A, Mastrolia L (1997) Fine cytology of interrenal cells in sea bass Dicentrarchus labrax (L.): influence of different salinity concentrations. In: Maitra SK (ed) Frontiers in environmental and metabolic endocrinology. University of Burdwan, India, pp 67–75

  • Giacomini E (1912) Anatomia microscopica e sviluppo del sistema interrenale e cromaffine (sistema feocromo) dei salmonidi. II. Sviluppo. Mem R Accad Sci Istit Bologna, Cl Sci Fis 9:381–437

    Google Scholar 

  • Grassi Milano E, Basari F, Chimenti C (1997) Adrenocortical and adrenomedullary homologs in eight species of adult and developing teleosts: morphology, histology, and immunohistochemistry. Gen Comp Endocrinol 108:483–496

    Article  PubMed  Google Scholar 

  • Hsu H-J, Lin G, Chung B-C (2003) Parallel early development of zebrafish interrenal glands and pronephros: differential control by wt1 and ff1b. Development 130:2107–2116

    Article  CAS  PubMed  Google Scholar 

  • Hwang P-P, Wu S-M, Lin J-H, Wu L-S (1992) Cortisol content of eggs and larvae of teleosts. Gen Comp Endocrinol 86:189–196

    CAS  PubMed  Google Scholar 

  • Idelman S (1978) The structure of the mammalian adrenal cortex. In: Chester Jones I, Henderson IW (eds) General, comparative and clinical endocrinology of the adrenal cortex, vol. 2. Academic Press, London, pp 1–199

  • Ishimura K, Fujita H (1995) Further observations on the fine structure of the development of the interrenal tissue of the chick embryo. Tokushima J Exp Med 42:17–26

    CAS  PubMed  Google Scholar 

  • Keegan CE, Hammer GD (2002) Recent insights into organogenesis of the adrenal cortex. Trends Endocrinol Metab 13:200–208

    Article  CAS  PubMed  Google Scholar 

  • Langley K, Grant NJ (1999) Molecular markers of sympathoadrenal cells. Cell Tissue Res 298:185–206

    CAS  PubMed  Google Scholar 

  • Liu YW, Gao W, Teh HL, Tan JH, Chan WK (2003) Prox1 is a novel coregulator of Ff1b and is involved in the embryonic development of the zebrafish interrenal primordium. Mol Cell Biol 23:7243–7255

    Article  CAS  PubMed  Google Scholar 

  • Magalhães MM, Breda JR, Magalhães M (1978) Ultrastructural studies on the prenatal development of the rat adrenal cortex. J Ultrastr Res 64:115–123

    Google Scholar 

  • Mastrolia L, Gallo VP (1989) Fine structure of the interrenal cells of Aphanius fasciatus (Teleostei, Cyprinodontidae) and modifications after stress. Biol Struct Morphog 2:71–79

    Google Scholar 

  • Mastrolia L, Manelli H (1969) Differentiation of the adrenal chromaffin cells in the chicken embryo. Acta Embryol Exp 2:257–279

    CAS  Google Scholar 

  • Mastrolia L, Gallo VP, La Marca A (1984) The adrenal chromaffin cells of Salmo gairdneri Richardson (Teleostei, Salmonidae). J Anat 138:503–511

    PubMed  Google Scholar 

  • Meyer W, Sauerbier I (1977) The development of catecholamines in embryos and larvae of the rainbow trout (Salmo gairdneri Rich). J Fish Biol 10:431–435

    CAS  Google Scholar 

  • Millar TJ, Unsicker K (1981). Catecholamine-storing cells in the adrenal medulla of the pre- and posnatal rat. Cell Tissue Res 217:155–170

    Article  CAS  PubMed  Google Scholar 

  • Nussdorfer GG (1986) Cytophysiology of the adrenal cortex. Int Rev Cytol 98:1–394

    Google Scholar 

  • Pillai AK, Salhanick AI, Terner C (1974) Studies of metabolism in embryonic development. V. Biosynthesis of corticosteroids by trout embryos. Gen Comp Endocrinol 24:152–161

    CAS  PubMed  Google Scholar 

  • Rupik W (2002) Early development of the adrenal glands in the grass snake Natrix natrix L (Lepidosauria, Serpentes). Adv Anat Embryol Cell Biol 164:1–99

    Google Scholar 

  • Tomlison A, Coupland RE (1990) The innervation of the adrenal gland. IV. Innervation of the rat adrenal medulla from birth to old age. A descriptive and quantitative morphometric and biochemical study of the innervations of chromaffin cells and adrenal medullary neurons in Wistar rats. J Anat 169:209–236

    PubMed  Google Scholar 

  • Unsicker K, Finotto S, Krieglstein K (1997) Generation of cell diversity in the peripheral autonomic nervous system: the sympathoadrenal cell lineage revisited. Ann Anat 179:495–500

    CAS  Google Scholar 

  • Valarche I, Tissier-Seta JP, Hirsch MR, Martinez S, Goridis C, Brunet JF (1993) The mouse homoedomain protein Phox2 regulates Ncam promoter activity in concert with Cux/CDP and is a putative determinant of neurotransmitter phenotype. Development 119:881–896

    Google Scholar 

  • Vernier JM (1969) Tables chronologiques du développement embryonnaire de la truit arc-en-ciel, Salmo gairdneri Rich. Ann Embr Morph 2:495–520

    Google Scholar 

  • Zeqiri F, Hyvärinen H (1997) Histology, ultrastructure and steroid-enzyme histochemistry of the interrenal and chromaffin cells in the head kidney of crucian carp (Carassius carassius L.). Period Biol 99:453–574

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Italian Ministry of University and Scientific Research. We are grateful to Dr. E. Gelosi and the President of Arsial for kindly supplying the fish, to Dr. Valentina Della Bella for help with statistical analysis, and to Mrs. Maria Antonietta Bracci for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina P. Gallo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallo, V.P., Civinini, A. The development of adrenal homolog of rainbow trout Oncorhynchus mykiss: an immunohistochemical and ultrastructural study. Anat Embryol 209, 233–242 (2005). https://doi.org/10.1007/s00429-004-0433-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-004-0433-y

Keywords

Navigation