Skip to main content

Advertisement

Log in

Cytoarchitecture of the medial geniculate body and thalamic projections to the auditory cortex in the rufous horseshoe bat (Rhinolophus rouxi)

I. Temporal fields

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The auditory cortex in echolocating bats is one of the best studied in mammals, yet the projections of the thalamus to the different auditory cortical fields have not been systematically analyzed in any bat species. The data of the present study were collected as part of a combined investigation of physiological properties, neuroarchitecture, and chemoarchitecture as well as connectivity of cortical fields in Rhinolophus in order to establish a neuroanatomically and functionally coherent view of the auditory cortex in the horseshoe bat. This paper first describes the neuroanatomic parcellation of the medial geniculate body and then concentrates on the afferent thalamic connections with auditory cortical fields of the temporal region. Deposits of horseradish peroxidase and wheatgerm-agglutinated horseradish peroxidase were made into neurophysiologically characterized locations of temporal auditory cortical fields; i.e., the tonotopically organized primary auditory cortex, a ventral field, and a temporal subdivision of a posterior dorsal field. A clear topographic relationship between thalamic subdivisions and specific cortical areas is demonstrated. The primary auditory cortex receives topographically organized input from the central ventral medial geniculate body. The projection patterns to the temporal subdivision of the posterior dorsal field suggest that it is a “core” field, similar to the posterior fields in the cat. Projections to the ventral field arise primarily from border regions of the ventral medial geniculate body. On the whole, the organization of the medial geniculate body projections to the temporal auditory cortex is quite similar to that described in other mammals, including cat and monkey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AC:

auditory cortex

AD:

anterior dorsal nucleus of MGB

adf :

anterior dorsal field of AC

ADS:

anterior dorsal superficial nucleus of MGB

AP:

pretectal area

ax:

axon

BIC:

brachium of the IC

BICN:

nucleus of the BIC

CF:

constant frequency

CP:

cerebral peduncle

D:

dorsal nucleus of MGB

DD:

deep dorsal nucleus of MGB

ddf :

dorsal dorsal field of AC

DS:

dorsal superficial nucleus of MGB

FM:

frequency modulation

Fr:

frontal region

HA:

Habenula

HRP:

horseradish peroxidase

IC:

inferior colliculus

ILN:

intralaminar nuclei

LGB:

lateral geniculate body

LGBv:

ventral LGB

LGBi:

intergeniculate leaflet of LGB

LPc, r:

caudal and rostral part of the lateral posterior nucleus

M, MGBm:

medial division of MGB

M/PO:

transition zone of MGBm and ILN/PO

MGB:

medial geniculate body

MGBd:

dorsal division of MGB

MGBm, M:

medial division of MGB

MGBv, V:

ventral division of MGB

MGB1–MGB6:

6 representative MGB atlas sections from different rostrocaudal levels

MZ:

marginal zone of MGB

NRTH:

reticular nucleus of the thalamus

Occ:

occipital region

OT:

optic tract

Par:

parietal region

Par1, 2, 3, 4:

parietal fields 1–4 of the parietal region

Par/Occ:

parietal/occipital transition zone

PL:

posterior limitans nucleus

pf :

primary field of AC

PO:

posterior nucleus

POL, POM:

lateral, medial nucleus of PO

PO/ILN:

intralaminar portion of PO

rdf :

rostral dorsal field of AC

SGN:

suprageniculate nucleus

SN:

substantia nigra

SPFL:

subparafascicular nucleus

SPN:

suprapeduncular nucleus

Te:

temporal region

Te1, 2:

temporal fields 1 and 2 of the temporal region

Te1′, 2′:

temporal fields 1′ and 2′ of the temporal region

Te2r, c:

rostral and caudal part of Te2

Te/Occ:

temporal/occipital transition zone

Te-Rz:

edge zone of the temporal region

V, MGBv:

ventral division of MGB

V′:

border zones of MGBv

vf :

ventral field of AC

VL:

ventrolateral nucleus of MGB

VTH/PO:

tentative name for an area, that is part of the ventral nuclear group of the lateral thalamus (VTH; possibly ventrobasal complex or ventroposterior nucleus) and/or the posterior nuclei group (possibly the lateral or medial nucleus of the posterior group (POL or POM)

WGA-HRP:

wheat germ-agglutinated HRP

ZI:

zona incerta

References

  • Adams JC (1977) Technical considerations on the use of horseradish peroxidase as a neuronal marker. Neuroscience 2:141–145

    Google Scholar 

  • Aitkin LM, Gates GR (1983) Connections of the auditory cortex of the brush-tailed possum, Trichosurus vulpecula. Brain Behav Evol 22:75–88

    CAS  PubMed  Google Scholar 

  • Andersen RA, Knight PL, Merzenich MM (1980) The thalamocortical and corticothalamic connections of AI, AII, and the anterior auditory field (AAF) in the cat: evidence for two largely segregated systems of connections. J Comp Neurol 194:663–701

    CAS  PubMed  Google Scholar 

  • Bajo VM, Rouiller EM, Welker E, Clarke S, Villa AE, de Ribaupierre Y, de Ribaupierre F (1995) Morphology and spatial distribution of corticothalamic terminals originating from the cat auditory cortex. Hear Res 83:161–174

    Article  CAS  PubMed  Google Scholar 

  • Budinger E, Heil P, Scheich H (2000) Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). IV. Connections with anatomically characterized subcortical structures. Eur J Neurosci 12:2452–2474

    Article  CAS  PubMed  Google Scholar 

  • Calford MB, Aitkin LM (1983) Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through the thalamus. J Neurosci 3:2365–2380

    CAS  PubMed  Google Scholar 

  • Casseday JH, Kobler JB, Isbey SF, Covey E (1989) Central acoustic tract in an echolocating bat: an extralemniscal auditory pathway to the thalamus. J Comp Neurol 287:247–259

    CAS  PubMed  Google Scholar 

  • Clarey JC, Irvine DR (1990) The anterior ectosylvian sulcal auditory field in the cat: II. A horseradish peroxidase study of its thalamic and cortical connections. J Comp Neurol 301:304–324

    CAS  PubMed  Google Scholar 

  • Clerici WJ, Coleman JR (1990) Anatomy of the rat medial geniculate body: I. Cytoarchitecture, myeloarchitecture, and neocortical connectivity. J Comp Neurol 297:14–31

    CAS  PubMed  Google Scholar 

  • Dear SP, Fritz J, Haresign T, Ferragamo MJ, Simmons JA (1993) Tonotopic and functional organization in the auditory cortex of the big brown bat, Eptesicus fuscus. J Neurophysiol 70:1988–2009

    CAS  PubMed  Google Scholar 

  • Doron NN, LeDoux JE, Semple MN (2002) Redefining the tonotopic core of rat auditory cortex: physiological evidence for a posterior field. J Comp Neurol 453:345–360

    Article  PubMed  Google Scholar 

  • Engelstätter R (1981) Hörphysiologische Untersuchungen an Neuronen der aufsteigenden Hörbahn der echoortenden Fledermaus, Rhinolophus rouxi. Frankfurt am Main. Dissertation

  • Esser KH, Eiermann A (1999) Tonotopic organization and parcellation of auditory cortex in the FM-bat Carollia perspicillata. Eur J Neurosci 11:3669–3682

    Article  CAS  PubMed  Google Scholar 

  • Frisina RD, O’Neill WE, Zettel ML (1989) Functional organization of mustached bat inferior colliculus: II. Connections of the FM2 region. J Comp Neurol 284:85–107

    CAS  PubMed  Google Scholar 

  • Fromm S (1990) Anatomische und physiologische Charakterisierung des medialen Geniculatums der Hufeisennase Rhinolophus rouxi. Diplomarbeit, University Munich

  • Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1:203–209

    CAS  PubMed  Google Scholar 

  • Hashikawa T, Rausell E, Molinari M, Jones EG (1991) Parvalbumin- and calbindin-containing neurons in the monkey medial geniculate complex: differential distribution and cortical layer specific projections. Brain Res 544:335–341

    Article  CAS  PubMed  Google Scholar 

  • Hashikawa T, Molinari M, Rausell E, Jones EG (1995) Patchy and laminar terminations of medial geniculate axons in monkey auditory cortex. J Comp Neurol 362:195–208

    CAS  PubMed  Google Scholar 

  • He JF, Hashikawa T (1998) Connections of the dorsal zone of cat auditory cortex. J Comp Neurol 400:334–348

    Article  CAS  PubMed  Google Scholar 

  • He JF, Hashikawa T, Ojima H, Kinouchi Y (1997) Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. J Neurosci 17:2615–2625

    CAS  PubMed  Google Scholar 

  • Heil P, Irvine DR (1998) Functional specialization in auditory cortex: responses to frequency-modulated stimuli in the cat’s posterior auditory field. J Neurophysiol 79:3041–3059

    CAS  PubMed  Google Scholar 

  • Imig TJ, Morel A (1984) Topographic and cytoarchitectonic organization of thalamic neurons related to their targets in low-, middle-, and high-frequency representations in cat auditory cortex. J Comp Neurol 227:511–539

    CAS  PubMed  Google Scholar 

  • Jen PHS, Sun XD, Lin PJ (1989) Frequency and space representation in the primary auditory cortex of the frequency modulating bat Eptesicus fuscus. J Comp Physiol A 165:1–14

    CAS  PubMed  Google Scholar 

  • Kaas JH, Hackett TA (1998) Subdivisions of auditory cortex and levels of processing in primates. Audiol Neurootol 3:73–85

    Article  CAS  PubMed  Google Scholar 

  • Kudo M, Aitkin LM, Nelson JE (1989) Auditory forebrain organization of an Australian marsupial, the northern native cat (Dasyurus hallucatus). J Comp Neurol 279:28–42

    CAS  PubMed  Google Scholar 

  • LeDoux JE, Ruggiero DA, Forest R, Stornetta R, Reis DJ (1987) Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat. J Comp Neurol 264:123–146

    CAS  PubMed  Google Scholar 

  • Llano DA, Feng AS (1999) Response characteristics of neurons in the medial geniculate body of the little brown bat to simple and temporally-patterned sounds. J Comp Physiol A 184:371–385

    Article  CAS  PubMed  Google Scholar 

  • Luethke LE, Krubitzer LA, Kaas JH (1989) Connections of primary auditory cortex in the New World monkey, Saguinus. J Comp Neurol 285:487–513

    CAS  PubMed  Google Scholar 

  • Mesulam MM (1978) Tetramethylbenzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem 26:106–117

    CAS  PubMed  Google Scholar 

  • Mitani A, Itoh K, Mizuno N (1987) Distribution and size of thalamic neurons projecting to layer I of the auditory cortical fields of the cat compared to those projecting to layer IV. J Comp Neurol 257:105–121

    CAS  PubMed  Google Scholar 

  • Molinari M, Dell’Anna ME, Rausell E, Leggio MG, Hashikawa T, Jones EG (1995) Auditory thalamocortical pathways defined in monkeys by calcium-binding protein immunoreactivity. J Comp Neurol 362:171–194

    CAS  PubMed  Google Scholar 

  • Morel A, Imig TJ. (1987) Thalamic projections to fields A, AI, P, and VP in the cat auditory cortex. J Comp Neurol 265:119–144

    CAS  PubMed  Google Scholar 

  • Morel A, Kaas JH (1992) Subdivisions and connections of auditory cortex in owl monkeys. J Comp Neurol 318:27–63

    CAS  PubMed  Google Scholar 

  • Morel A, Garraghty PE, Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J Comp Neurol 335:437–459

    CAS  PubMed  Google Scholar 

  • Morest DK (1964) The neuronal architecture of the medial geniculate body of the cat. J Anat (London) 98:611–630

    Google Scholar 

  • Morest DK (1965) The laminar structure of the medial geniculate body of the cat. J Anat (London) 99:143–160

    Google Scholar 

  • O’Neill WE (1995) The bat auditory cortex. In: Popper AN, Fay RR (eds) Hearing by bats. Springer, Berlin Heidelberg New York, pp 535–549

  • Oliver DL (1982) A Golgi study of the medial geniculate body in the tree shrew (Tupaia glis). J Comp Neurol 209:1–16

    CAS  PubMed  Google Scholar 

  • Oliver DL, Hall WC (1978a) The medial geniculate body of the tree shrew, Tupaia glis. I. Cytoarchitecture and midbrain connections. J Comp Neurol 182:423–458

    CAS  PubMed  Google Scholar 

  • Oliver DL, Hall WC (1978b) The medial geniculate body of the tree shrew, Tupaia glis. II. Connections with the neocortex. J Comp Neurol 182:459–493

    CAS  PubMed  Google Scholar 

  • Olsen JF (1986) Processing of biosonar information by the medial geniculate body of the mustached bat. 1–325. Washington University, St. Louis. Dissertation

  • Olsen JF, Suga N (1991) Combination-sensitive neurons in the medial geniculate body of the mustached bat: encoding of relative velocity information. J Neurophysiol 65:1254–1274

    CAS  PubMed  Google Scholar 

  • Ostwald J (1984) Tonotopical organization and pure tone response characteristics of single units in the auditory cortex of the greater horseshoe bat. J Comp Physiol A 155:821–834

    Google Scholar 

  • Patterson HA (1977) An anterograde degeneration and retrogradeaxonal transport study of the cortical projections of the rat medial geniculate body. 1–171. Boston University Graduate School. Dissertation

  • Radtke S (1979) Struktur und Verschaltung des Hörcortex der großen Hufeisennase (Rhinolophus ferrumequinum). Staatsexamensarbeit, Frankfurt

  • Radtke-Schuller S (2001) Neuroarchitecture of the auditory cortex in the rufous horseshoe bat (Rhinolophus rouxi). Anat Embryol 204:81–100

    Article  CAS  PubMed  Google Scholar 

  • Radtke-Schuller S, Schuller G (1995) Auditory cortex of the rufous horseshoe bat: 1. Physiological response properties to acoustic stimuli and vocalizations and the topographical distribution of neurons. Eur J Neurosci 7:570–591

    CAS  PubMed  Google Scholar 

  • Radtke-Schuller S, Schuller G, O’Neill WE (2004) Thalamic projections to the auditory cortex in the rufous horseshoe bat (Rhinolophus rouxi): II. Dorsal fields. Anat Embryol, this issue

  • Rauschecker JP (1997) Processing of complex sounds in the auditory cortex of cat, monkey, and man. Acta Otolaryngol Suppl 53:234–238

    Google Scholar 

  • Rauschecker JP, Tian B, Hauser M (1995) Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268:111–114

    CAS  PubMed  Google Scholar 

  • Reale RA, Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. J Comp Neurol 192:265–291

    CAS  PubMed  Google Scholar 

  • Redies H, Brandner S, Creutzfeldt OD (1989) Anatomy of the auditory thalamocortical system of the guinea pig. J Comp Neurol 282:489–511

    CAS  PubMed  Google Scholar 

  • Rodrigues-Dagaeff C, Simm GM, de-Ribaupierre Y, Villa AE, de Ribaupierre F, Rouiller EM (1989) Functional organization of the ventral division of the medial geniculate body of the cat: evidence for a rostro-caudal gradient of response properties and cortical projections. Hear Res 39:103–125

    Article  CAS  PubMed  Google Scholar 

  • Romanski LM, LeDoux JE (1993) Organization of rodent auditory cortex: anterograde transport of PHA-L from MGv to temporal neocortex. Cereb Cortex 3:499–514

    CAS  PubMed  Google Scholar 

  • Rouiller EM, Hornung JP, de-Ribaupierre F (1989) Extrathalamic ascending projections to physiologically identified fields of the cat auditory cortex. Hear Res 40:233–246

    Article  CAS  PubMed  Google Scholar 

  • Scheel M (1988) Topographic organization of the auditory thalamocortical system in the albino rat. Anat Embryol 179:181–190

    Article  CAS  PubMed  Google Scholar 

  • Schuller G, Radtke-Schuller S, Betz M (1986) A stereotaxic method for small animals using experimentally determined reference profiles. J Neurosci Meth 18:339–350

    Article  CAS  Google Scholar 

  • Schuller G, O’Neill WE, Radtke-Schuller S (1991) Facilitation and delay sensitivity of auditory cortex neurons in CF-FM bats Rhinolophus rouxi and Pteronotus parnelli-parnellii. Europ J Neurosci 3:1165–1181

    Google Scholar 

  • Shannon-Hartman S, Wong D, Maekawa M (1992) Processing of pure-tone and FM stimuli in the auditory cortex of the FM bat, Myotis lucifugus. Hear Res 61:179–188

    Article  CAS  PubMed  Google Scholar 

  • Stiebler I (1987) A distinct ultrasound-processing area in the auditory cortex of the mouse. Naturwissenschaften 74:96–97

    CAS  PubMed  Google Scholar 

  • Stiebler I, Neulist R, Fichtel I, Ehret G (1997) The auditory cortex of the house mouse: left-right differences, tonotopic organization and quantitative analysis of frequency representation. J Comp Physiol A 181:559–571

    Article  CAS  PubMed  Google Scholar 

  • Suga N (1990) Cortical computational maps for auditory imaging. Neural Networks 3:3–21

    Article  Google Scholar 

  • Thomas HF, Tillein J, Heil P, Scheich H (1993) Functional organization of auditory cortex in the mongolian gerbil (Meriones unguiculatus). I. Electrophysiological mapping of frequency representation and distinction of fields. Eur J Neurosci 5:882–897

    CAS  PubMed  Google Scholar 

  • Vater M, Kössl M, Horn AK (1992) GAD- and GABA-immunoreactivity in the ascending auditory pathway of horseshoe and mustached bats. J Comp Neurol 325:183–206

    CAS  PubMed  Google Scholar 

  • Wallace MN, Rutkowski RG, Palmer AR (2000) Identification and localisation of auditory areas in guinea pig cortex. Exp Brain Res 132:445–456

    Article  CAS  PubMed  Google Scholar 

  • Wenstrup JJ, Grose CD (1995) Inputs to combination-sensitive neurons in the medial geniculate body of the mustached bat: the missing fundamental. J Neurosci 15:4693–4711

    CAS  PubMed  Google Scholar 

  • Wenstrup JJ, Larue DT, Winer JA (1994) Projections of physiologically defined subdivisions of the inferior colliculus in the mustached bat: targets in the medial geniculate body and extrathalamic nuclei. J Comp Neurol 346:207–236

    CAS  PubMed  Google Scholar 

  • Winer JA (1984) The human medial geniculate body. Hear Res 15:225–247

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (1985) The medial geniculate body of the cat. Adv Anat Embryol Cell Biol 86:1–97

    CAS  PubMed  Google Scholar 

  • Winer JA (1992) The functional architecture of the medial geniculate body and the primary auditory cortex. In: Webster DB, Popper AN, Fay RR (eds). The mammalian auditory pathways: neuroanatomy. Springer, Berlin Heidelberg New York, pp 222–409

    Google Scholar 

  • Winer JA, Wenstrup JJ (1994) Cytoarchitecture of the medial geniculate body in the mustached bat (Pteronotus parnellii). J Comp Neurol 346:161–182

    CAS  PubMed  Google Scholar 

  • Winer JA, Diamond IT, Raczkowski D (1977) Subdivisions of the auditory cortex of the cat: the retrograde transport of horseradish peroxidase to the medial geniculate body and posterior thalamic nuclei. J Comp Neurol 176:387–417

    CAS  PubMed  Google Scholar 

  • Winer JA, Morest DK, Diamond IT (1988) A cytoarchitectonic atlas of the medial geniculate body of the opossum, Didelphys virginiana, with a comment on the posterior intralaminar nuclei of the thalamus. J Comp Neurol 274:422–448

    CAS  PubMed  Google Scholar 

  • Winer JA, Wenstrup JJ, Larue DT (1992) Patterns of GABAergic immunoreactivity define subdivisions of the mustached bat’s medial geniculate body. J Comp Neurol 319:172–190

    CAS  PubMed  Google Scholar 

  • Winer JA, Larue DT, Pollak GD (1995) GABA and glycine in the central auditory system of the mustache bat: structural substrates for inhibitory neuronal organization. J Comp Neurol 355:317–353

    CAS  PubMed  Google Scholar 

  • Winer JA, Kelly JB, Larue DT (1999a) Neural architecture of the rat medial geniculate body. Hear Res 130:19–41

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Sally SL, Larue DT, Kelly JB (1999b) Origins of medial geniculate body projections to physiologically defined zones of rat primary auditory cortex. Hear Res 130:42–61

    Article  CAS  PubMed  Google Scholar 

  • Wong D, Shannon SL (1988) Functional zones in the auditory cortex of the echolocating bat, Myotis lucifugus. Brain Res 453:349–352

    Article  CAS  PubMed  Google Scholar 

  • Wong-Riley MTT (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171:11–28

    Article  CAS  PubMed  Google Scholar 

  • Zettel ML, Carr CE, O’Neill WE (1991) Calbindin-like immunoreactivity in the central auditory system of the mustached bat, Pteronotus parnelli. J Comp Neurol 313:1–16

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to Jean Büttner-Ennever, William E. O’Neill, and Gerd Schuller for thoughtful comments on the manuscript and the revision of the English text. This research was supported by Deutsche Forschungsgemeinschaft, SFB 204 (“Gehör”), TP10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Radtke-Schuller.

Additional information

Supported by Deutsche Forschungsgemeinschaft, SFB 204 (“Gehör”), TP10.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radtke-Schuller, S. Cytoarchitecture of the medial geniculate body and thalamic projections to the auditory cortex in the rufous horseshoe bat (Rhinolophus rouxi). Anat Embryol 209, 59–76 (2004). https://doi.org/10.1007/s00429-004-0424-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-004-0424-z

Keywords

Navigation