Skip to main content
Log in

Estimate of size and total number of neurons in superior cervical ganglion of rat, capybara and horse

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The superior (cranial) cervical ganglion was investigated by light microscopy in adult rats, capybaras (Hydrochaeris hydrochaeris) and horses. The ganglia were vascularly perfused, embedded in resin and cut into semi-thin sections. An unbiased stereological procedure (disector method) was used to estimate ganglion neuron size, total number of ganglion neurons, neuronal density. The volume of the ganglion was 0.5 mm3 in rats, 226 mm3 in capybaras and 412 mm3 in horses. The total number of neurons per ganglion was 18,800, 1,520,000 and 3,390,000 and the number of neurons per cubic millimetre was 36,700, 7,000 and 8,250 in rats, capybaras and horses, respectively. The average neuronal size (area of the largest sectional profile of a neuron) was 358, 982and 800 µm2, and the percentage of volume occupied by neurons was 33, 21 and 17% in rats, capybaras and horses, respectively. When comparing the three species (average body weight: 200 g, 40 kg and 200 kg), most of the neuronal quantitative parameters change in line with the variation of body weight. However, the average neuronal size in the capybara deviates from this pattern in being larger than that of in the horse. The rat presented great interindividual variability in all the neuronal parameters. From the data in the literature and our new findings in the capybara and horse, we conclude that some correlations exist between average size of neurons and body size and between total number of neurons and body size. However, these correlations are only approximate and are based on averaged parameters for large populations of neurons: they are less likely to be valid if one considers a single quantitative parameter. Several quantitative features of the nervous tissue have to be taken into account together, rather than individually, when evolutionary trends related to size are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247

    Google Scholar 

  • Alho H, Koistinaho J, Kovanen V, Suominen H, Hervonen A (1984) Effect of prolonged physical training on the histochemically demonstrable catecholamines in sympathetic neurons, the adrenal gland and extra-adrenal catecholamine storing cells of the rat. J Aut Nerv Syst 10:181–192

    Article  CAS  Google Scholar 

  • Andersen BB, Gundersen HJG, Pakkenberg B (2003) Aging of the human cerebellum: a stereological study. J Comp Neurol 466:356–365

    Article  PubMed  Google Scholar 

  • Andrews TJ (1996) Autonomic nervous system as a model of neuronal aging: the role of target tissues and neurotrophic factors. Microsc Res Tech 35:2-19

    Article  CAS  PubMed  Google Scholar 

  • Barasa A (1960) Forma, grandezza e densitá dei neuroni della corteccia cerebrale in mammiferi di grandezzá corporea differente. Z Zellforsch 53:69–89

    CAS  PubMed  Google Scholar 

  • Davies DC (1978) Neuronal numbers in the superior cervical ganglion of the neonatal rat. J Anat 127:43–51

    CAS  PubMed  Google Scholar 

  • Dail W, Barton S (1983) Structure and organization of mammalian sympathetic ganglia. In: Elfvin LG (ed) Autonomic ganglia. Wiley, Chichester, pp 3–25

  • De Felipe J, Alonso-Nanclares L, Arellano JI (2002) Microstructure of the neocortex: comparative aspects. J Neurocytol 31:299–316

    Article  PubMed  Google Scholar 

  • Dibner MD, Black IB (1978) Biochemical and morphological effects of testosterone treatment of developing sympathetic neurons. J Neurochem 30:1479–1483

    CAS  Google Scholar 

  • Ebbesson SOE (1968a) Quantitative studies of the superior cervical sympathetic ganglia in a variety of primates including man. J Morph 124:117–132

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE (1968b) Quantitative studies of the superior cervical sympathetic ganglia in a variety of primates including man. J Morph 124:181–186

    CAS  PubMed  Google Scholar 

  • Elfvin LG (1983) Autonomic ganglia. Wiley, New York

  • Flett DF, Bell C (1991) Topography of functional subpopulations in the superior cervical ganglion in the superior cervical ganglion of the rat. J Anat 177:55–66

    CAS  PubMed  Google Scholar 

  • Gabella G, Uvelius B (1998) Homotransplant of pelvic ganglion into bladder wall in adult rats. Neuroscience 83:645–653

    Article  CAS  PubMed  Google Scholar 

  • Gabella G, Trigg P, Mcphail H (1988) Quantitative cytology of ganglion neurons and satellite glial cells in the superior cervical ganglion of the sheep. Relationship with ganglion neuron size. J Neurocytol 17:753–769

    CAS  PubMed  Google Scholar 

  • Gabella G, Berggren T, Uvelius B (1992) Hypertrophy and reversal of hypertrophy in rat pelvic ganglion neurons. J Neurocytol 21:649–662

    CAS  PubMed  Google Scholar 

  • Gagliardo KM, Guidi WL, Da Silva RA, Ribeiro AACM (2003) Macro and microstructural organization of the dog’s caudal mesenteric ganglion complex (Canis familiaris). Anat Histol Embryol 32:236–243

    Article  CAS  PubMed  Google Scholar 

  • Gibbins IL (1991) Vasomotor, pilomotor and secretomotor neurons distinguished by size and neuropeptide content in superior cervical ganglia of mice. J Aut Nerv Syst 34:171–184

    Article  CAS  Google Scholar 

  • Gorin PD, Johnson EM (1980) Effects of long-term nerve growth factor deprivation on the nervous system of the adult rat: an experimental autoimmune approach. Brain Res 198:27–42

    Article  CAS  PubMed  Google Scholar 

  • Gundersen HJG (1977) Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. J Microsc 111:219–223

    Google Scholar 

  • Gundersen HJG, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263

    PubMed  Google Scholar 

  • Haug H (1967) Zytoarchitektonische Untersuchungen an der Hirnrinde des Elefanten. Anat Anz 120:331–337

    Google Scholar 

  • Hendry IA (1977) The effect of retrograde axonal transport of nerve grown factor on the morphology of adrenergic neurons. Brain Res 134:213–233

    Article  CAS  PubMed  Google Scholar 

  • Hendry IA, Campbell J (1976) Morphometric analysis of rat superior cervical ganglion after axotomy and nerve growth factor treatment. J Neurocytol 5:351–360

    CAS  PubMed  Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1964) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28:560–80

    Google Scholar 

  • Howard CV, Reed MG (1998) Unbiased stereology. Three-dimensional measurement in microscopy. Bios Scientific Publishers, Oxford

  • Howard CV, Reid S, Baddeley A, Boyde A (1985) Unbiased estimation of particle density in the tandem scanning reflected light microscope. J Microsc 138:203–212

    PubMed  Google Scholar 

  • Lange W (1975) Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell Tiss Res 157:115–124

    CAS  Google Scholar 

  • Levi G (1925) Wachstum und Körpergrösse. Die strukturelle Grundlage der Körpergrösse bei vollausgebildeten und im Wachstum begriffen Tieren. Ergeb Anat Ent Gesch 26:187–342

    Google Scholar 

  • Levi-Montalcini R, Booker B (1960) Destruction of the sympathetic ganglia in mammals by an antiserum to a nerve-growth protein. Proc Natl Acad Sci 46:384–391

    Google Scholar 

  • Luebke JI, Wright LL (1992) Characterization of superior cervical ganglion neurons that project to the submandibular gland, the eyes and the pineal gland in rats. Brain Res 589:1–14

    Article  CAS  PubMed  Google Scholar 

  • Mayhew TM (1989) Stereological studies on rat spinal neurons during postnatal development: estimates of mean perikaryal and nuclear volumes free from assumptions about shape. J Anat 172:191–200

    Google Scholar 

  • Mayhew TM (1991) Accurate prediction of Purkinje cell number from cerebellar weight can be achieved with the fractionator. J Comp Neurol 308:162–168

    CAS  PubMed  Google Scholar 

  • Mayhew TM, Gundersen HJG (1996) ‘If you assume, you can make an ass out of u and me’: a decade of the disector for stereological counting of particles in 3D space. J Anat 188:1–15

    PubMed  Google Scholar 

  • Mayhew TM, Olsen DR (1991) Magnetic resonance imaging (MRI) and model-free estimates of brain volume determined using the Cavalieri principle. J Anat 178:133–144

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (1998) The central nervous system of vertebrates, vol 3. Springer, Berlin Heidelberg New York

  • Pakkenberg B, Gundersen HJG (1988) Total number of neurons and glial cells in human brain nuclei estimated by the disector and fractionator. J Microsc 150:1-20

    PubMed  Google Scholar 

  • Pakkenberg B, Gundersen HJG (1989) New stereological method for obtaining unbiased and efficient estimates of total nerve cell number in human brain areas. APMIS 97:677–681

    CAS  PubMed  Google Scholar 

  • Pakkenberg B, Gundersen HJG (1997) Neocortical neuron number in humans: effect of age and sex. J Comp Neurol 384:312–320

    Article  CAS  PubMed  Google Scholar 

  • Pover CM, Coggeshall RE (1991) Verification of the disector method for counting neurons, with comments on the empirical method. Anat Rec 231:573–578

    CAS  PubMed  Google Scholar 

  • Purves D, Rubin E, Snider WD, Lichtman J (1986b) Relation of animal size to convergence, divergence and neuronal number in peripheral sympathetic pathways. J Neurosci 6:158–163

    CAS  PubMed  Google Scholar 

  • Ribeiro AACM, Miglino MA, De Souza RR (2000a) Anatomic study of the celiac, celiac-mesenteric and cranial mesenteric ganglia and its connections in cross-breed buffalo fetuses (Bubalus bubalis). Braz J Vet Res Anim Sci 37:109–114

    Google Scholar 

  • Ribeiro AACM, De Souza RR, Barbosa J, Fernandes-Filho A (2000b) Anatomic study of the celiac, celiac-mesenteric and cranial mesenteric ganglia and its connections in the domestic cat (Felis domestica). Braz J Vet Res Anim Sci 37:267–272

    Google Scholar 

  • Ribeiro AACM, Elias CF, Liberti EA, Guidi WL, De Souza RR (2002) Structure and ultrastructure of the celiac-mesenteric ganglion complex in the domestic dog (Canis familiaris). Anat Histol Embryol 31:344–349

    Article  CAS  PubMed  Google Scholar 

  • Santer RM (1991) Sympathetic neurone numbers in ganglia of young and aged rats. J Aut Nerv Syst 33:221–222

    Article  Google Scholar 

  • Sasahara THC, De Souza RR, Machado MRF, Da Silva RA, Guidi WL, Ribeiro AACM (2003) Macro and microstructural organization of the rabbit’s celiac-mesenteric ganglion complex. Ann Anat 185:441–448

    PubMed  Google Scholar 

  • Steers WD, de Groat WC (1988) Effect of bladder outlet obstruction on micturition reflex pathways in the rat. J Urol 140:864–71

    CAS  PubMed  Google Scholar 

  • Steers WD, Ciambotti J, Erdman S, de Groat WC (1990) Morphological plasticity in efferent pathways to the urinary bladder of the rat following urethral obstruction. J Neurosci 10:1943–1951

    CAS  PubMed  Google Scholar 

  • Steers WD, Kolbeck S, Creedon D, Tuttle JB (1991) Nerve growth factor in the urinary bladder of the adult regulates neuronal form and function. J Clin Invest 88:1709–1715

    CAS  PubMed  Google Scholar 

  • Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136

    PubMed  Google Scholar 

  • Tower DB (1954) Structural and functional organization of the mammalian cerebral cortex: the correlation of neuron density with brain size. J Comp Neurol 101:19–52

    CAS  PubMed  Google Scholar 

  • Uddman R, Hara H, Edvinsonn L (1989) Neuronal pathways to the rat meningial artery revealed by retrograde tracing and immunohistochemistry. J Aut Nerv Syst 26:69–75

    Article  CAS  Google Scholar 

  • Voyvodic JT (1989a) Peripheral target regulation of dendritic geometry in the rat superior cervical ganglion. J Neurosci 9:1997–201

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Terry M. Mayhew (University of Nottingham, UK) for advice and help with the use of the physical disector. We thank Carla Siqueira de Figueiredo Barretto and Paulo Bezerra da Silva Neto from Profauna, Professor Maria Angélica Miglino (College of Veterinary Medicine/ University of São Paulo) and Professor Edna Freymüller from the Centre of Electron Microscopy (Federal University of São Paulo). A.A.C.M.R. wishes to thank his family for unfailing support and financial help: Josther, Sonia and Ana Paula. A.A.C.M.R. was supported by Conselho Nacional de Desenvolvimento Científico e Tecnólogico (CNPq; application no. 200516/01-9), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Augusto Coppi Maciel Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, A.A.C.M., Davis, C. & Gabella, G. Estimate of size and total number of neurons in superior cervical ganglion of rat, capybara and horse. Anat Embryol 208, 367–380 (2004). https://doi.org/10.1007/s00429-004-0407-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-004-0407-0

Keywords

Navigation