Skip to main content
Log in

Development of the amygdalohypothalamic projection in the mouse embryonic forebrain

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The amygdalohypothalamic projection, a major component of the stria terminalis, is involved in the conduction of emotional and olfactory information integrated in the amygdala to the hypothalamus to elicit emotional reactions. Despite the extensive studies on functional aspects of the amygdaloid complex, developmental mechanisms of the amygdala and related structures are still poorly understood. To investigate the development of the amygdalohypothalamic projection in the mouse embryonic brain, carbocyanine dye was applied to the amygdala to label the growing axons anterogradely and to the hypothalamus to label the amygdaloid neurons retrogradely. The initial outgrowth of the stria terminalis was found to be as early as E11.5. The pathway crossed in a saddle over the internal capsule, another prominent connection in the developing forebrain of the mammalian embryo. Bipolar immature neurons were distributed along the stria terminalis at the telencephalo-diencephalic boundary, and the internal capsule was also surrounded by these cells. These cells expressed immunoreactivities to calretinin and the lot-1 antigen which has been shown to be involved in guidance of the developing lateral olfactory tract. Ultrastructural analysis revealed an adherens-like junction between the stria terminalis and the apposed cells, implying contact-mediated guidance. These results suggest that, in the development of the stria terminalis, the axonal outgrowth is guided by a mechanism similar to that of the developing lateral olfactory tract, a major amygdalopetal connection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–F
Fig. 3
Fig. 4A–D
Fig. 5A–D
Fig. 6A–D
Fig. 7A–F
Fig. 8A–C
Fig. 9A–C
Fig. 10

Similar content being viewed by others

References

  • Abbott LC, Jacobowitz DM (1999) Developmental expression of calretinin-immunoreactivity in the thalamic eminence of the fetal mouse. Int J Dev Neurosci 17:331–345

    Article  CAS  PubMed  Google Scholar 

  • Al-Shamma HA, De Vries GJ (1996) Neurogenesis of the sexually dimorphic vasopressin cells of the bed nucleus of the stria terminalis and amygdala of rats. J Neurobiol 29:91–98

    Article  CAS  PubMed  Google Scholar 

  • Alheid GF, Beltramino CA, De Olmos JS, Forbes MS, Swanson DJ, Heimer L (1998) The neuronal organization of the supracapsular part of the stria terminalis in the rat: the dorsal component of the extended amygdala. Neuroscience 84:967–996

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Veazey RB, Cowan WM (1982) Some observations on hypothalamo-amygdaloid connections in the monkey. Brain Res 252:13–27

    Article  CAS  PubMed  Google Scholar 

  • Angevine JB Jr (1970) Time of neuron origin in the diencephalon of the mouse. An autoradiographic study. J Comp Neurol 139:129–187

    PubMed  Google Scholar 

  • Auladell C, Martinez A, Alcantara S, Super H, Soriano E (1995) Migrating neurons in the developing cerebral cortex of the mouse send callosal axons. Neuroscience 64:1091–1103

    Article  CAS  PubMed  Google Scholar 

  • Auladell C, Perez-Sust P, Super H, Soriano E (2000) The early development of thalamocortical and corticothalamic projections in the mouse. Anat Embryol 201:169–179

    CAS  PubMed  Google Scholar 

  • Bagri A, Marin O, Plump AS, Mak J, Pleasure SJ, Rubenstein JL, Tessier-Lavigne M (2002) Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 33:233–248

    Article  CAS  PubMed  Google Scholar 

  • Bayer SA (1980) Quantitative 3H-thymidine radiographic analyses of neurogenesis in the rat amygdala. J Comp Neurol 194:845–875

    CAS  PubMed  Google Scholar 

  • Bayer SA (1987) Neurogenetic and morphogenetic heterogeneity in the bed nucleus of the stria terminalis. J Comp Neurol 265:47–64

    CAS  PubMed  Google Scholar 

  • Benowitz LI, Routtenberg A (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20:84–91

    Article  CAS  PubMed  Google Scholar 

  • Berkelbach van der Sprenkel H (1926) Stria terminalis and amygdala in the brain of the opossum (Didelphis virginiana). J Comp Neurol 42:211–254

    Google Scholar 

  • Bruce LL, Neary TJ (1995) The limbic system of tetrapods: a comparative analysis of cortical and amygdalar populations. Brain Behav Evol 46:224–234

    CAS  PubMed  Google Scholar 

  • Dani JW, Armstrong DM, Benowitz LI (1991) Mapping the development of the rat brain by GAP-43 immunocytochemistry. Neuroscience 40:277–287

    Article  CAS  PubMed  Google Scholar 

  • De Olmos JS, Ingram WR (1972) The projection field of the stria terminalis in the rat brain. An experimental study. J Comp Neurol 146:303–334

    PubMed  Google Scholar 

  • Del Rio JA, Heimrich B, Borrell V, Forster E, Drakew A, Alcantara S, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Derer P, Frotscher M, Soriano E (1997) A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385:70–74

    Article  PubMed  Google Scholar 

  • Easter SS Jr, Ross LS, Frankfurter A (1993) Initial tract formation in the mouse brain. J Neurosci 13:285–299

    PubMed  Google Scholar 

  • Ghosh A, Antonini A, McConnell SK, Shatz CJ (1990) Requirement for subplate neurons in the formation of thalamocortical connections. Nature 347:179–181

    Article  CAS  PubMed  Google Scholar 

  • Han TM, De Vries GJ (1999) Neurogenesis of galanin cells in the bed nucleus of the stria terminalis and centromedial amygdala in rats: a model for sexual differentiation of neuronal phenotype. J Neurobiol 38:491–498

    Article  CAS  PubMed  Google Scholar 

  • Hankin MH, Silver J (1988) Development of intersecting CNS fiber tracts: the corpus callosum and its perforating fiber pathway. J Comp Neurol 272:177–190

    CAS  PubMed  Google Scholar 

  • Heimer L, de Olmos J, Alheid GF, Zaborszky L (1991) “Perestroika” in the basal forebrain: opening the border between neurology and psychiatry. Prog Brain Res 87:109–165

    CAS  PubMed  Google Scholar 

  • Heimer L, Nauta WJ (1969) The hypothalamic distribution of the stria terminalis in the rat. Brain Res 13:284–297

    Article  CAS  PubMed  Google Scholar 

  • Hirata T, Fujisawa H (1999) Environmental control of collateral branching and target invasion of mitral cell axons during development. J Neurobiol 38:93–104

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Osatake H (1988) A new drying method of biological specimens for scanning electron microscopy: the t-butyl alcohol freeze-drying method. Arch Histol Cytol 51:53–59

    CAS  PubMed  Google Scholar 

  • Ivanova A, Yuasa S (1998) Neuronal migration and differentiation in the development of the mouse dorsal cochlear nucleus. Dev Neurosci 20:495–511

    Article  CAS  PubMed  Google Scholar 

  • Johnston JB (1923) Further contributions to the study of the evolution of the forebrain. J Comp Neurol 35:337–481

    Google Scholar 

  • Jurkevich A, Barth SW, Kuenzel WJ, Kohler A, Grossmann R (1999) Development of sexually dimorphic vasotocinergic system in the bed nucleus of stria terminalis in chickens. J Comp Neurol 408:46–60

    Article  CAS  PubMed  Google Scholar 

  • Krettek JE, Price JL (1978) Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat. J Comp Neurol 178:225–254

    CAS  PubMed  Google Scholar 

  • Lanuza E, Font C, Martinez-Marcos A, Martinez-Garcia F (1997) Amygdalo-hypothalamic projections in the lizard Podarcis hispanica: a combined anterograde and retrograde tracing study. J Comp Neurol 384:537–555

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  CAS  PubMed  Google Scholar 

  • Letinic K, Kostovic I (1997) Transient fetal structure, the gangliothalamic body, connects telencephalic germinal zone with all thalamic regions in the developing human brain. J Comp Neurol 384:373–395

    Article  CAS  PubMed  Google Scholar 

  • Letinic K, Rakic P (2001) Telencephalic origin of human thalamic GABAergic neurons. Nat Neurosci 4:931–936

    Article  CAS  PubMed  Google Scholar 

  • Ljungdahl A, Hokfelt T, Nilsson G (1978) Distribution of substance P-like immunoreactivity in the central nervous system of the rat-I. Cell bodies and nerve terminals. Neuroscience 3:861–943

    Article  CAS  PubMed  Google Scholar 

  • Marin O, Baker J, Puelles L, Rubenstein JL (2002) Patterning of the basal telencephalon and hypothalamus is essential for guidance of cortical projections. Development 129:761–773

    CAS  PubMed  Google Scholar 

  • Martinez-Garcia F, Olucha FE, Teruel V, Lorente MJ (1993) Fiber connections of the amygdaloid formation of the lizard Podarcis hispanica. Brain Behav Evol 41:156–162

    CAS  PubMed  Google Scholar 

  • McConnell J, Angevine JB Jr (1983) Time of neuron origin in the amygdaloid complex of the mouse. Brain Res 272:150–156

    Article  CAS  PubMed  Google Scholar 

  • Metin C, Godement P (1996) The ganglionic eminence may be an intermediate target for corticofugal and thalamocortical axons. J Neurosci 16:3219–3235

    CAS  PubMed  Google Scholar 

  • Mitrofanis J, Baker GE (1993) Development of the thalamic reticular and perireticular nuclei in rats and their relationship to the course of growing corticofugal and corticopetal axons. J Comp Neurol 338:575–587

    CAS  PubMed  Google Scholar 

  • Molnar Z, Adams R, Blakemore C (1998A) Mechanisms underlying the early establishment of thalamocortical connections in the rat. J Neurosci 18:5723–5745

    CAS  PubMed  Google Scholar 

  • Molnar Z, Adams R, Goffinet AM, Blakemore C (1998B) The role of the first post-mitotic cortical cells in the development of thalamocortical innervation in the reeler mouse. J Neurosci 18:5746–5765

    CAS  PubMed  Google Scholar 

  • Ni L, Jonakait GM (1988) Development of substance P-containing neurons in the central nervous system in mice: an immunocytochemical study. J Comp Neurol 275:493–510

    CAS  PubMed  Google Scholar 

  • Pires-Neto MA, Braga-De-Souza S, Lent R (1998) Molecular tunnels and boundaries for growing axons in the anterior commissure of hamster embryos. J Comp Neurol 399:176–188

    Article  CAS  PubMed  Google Scholar 

  • Price JL, Slotnick BM, Revial MF (1991) Olfactory projections to the hypothalamus. J Comp Neurol 306:447–461

    CAS  PubMed  Google Scholar 

  • Sakanaka M, Shiosaka S, Takatsuki K, Inagaki S, Takagi H, Senba E, Kawai Y, Matsuzaki T, Tohyama M (1981) Experimental immunohistochemical studies on the amygdalofugal peptidergic (substance P and somatostatin) fibers in the stria terminalis of the rat. Brain Res 221:231–242

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Hirata T, Ogawa M, Fujisawa H (1998) Requirement for early-generated neurons recognized by monoclonal antibody lot-1 in the formation of lateral olfactory tract. J Neurosci 18:7800–7810

    CAS  PubMed  Google Scholar 

  • Schwob JE, Price JL (1984) The development of axonal connections in the central olfactory system of rats. J Comp Neurol 223:177–202

    CAS  PubMed  Google Scholar 

  • Shammah-Lagnado SJ, Beltramino CA, McDonald AJ, Miselis RR, Yang M, de Olmos J, Heimer L, Alheid GF (2000) Supracapsular bed nucleus of the stria terminalis contains central and medial extended amygdala elements: evidence from anterograde and retrograde tracing experiments in the rat. J Comp Neurol 422:533–555

    Article  CAS  PubMed  Google Scholar 

  • Song DD, Harlan RE (1994) The development of enkephalin and substance P neurons in the basal ganglia: insights into neostriatal compartments and the extended amygdala. Brain Res Dev Brain Res 83:247–261

    Article  CAS  PubMed  Google Scholar 

  • Sretavan DW, Pure E, Siegel MW, Reichardt LF (1995) Disruption of retinal axon ingrowth by ablation of embryonic mouse optic chiasm neurons. Science 269:98–101

    CAS  PubMed  Google Scholar 

  • Sugisaki N, Hirata T, Naruse I, Kawakami A, Kitsukawa T, Fujisawa H (1996) Positional cues that are strictly localized in the telencephalon induce preferential growth of mitral cell axons. J Neurobiol 29:127–137

    Article  CAS  PubMed  Google Scholar 

  • Tomioka N, Osumi N, Sato Y, Inoue T, Nakamura S, Fujisawa H, Hirata T (2000) Neocortical origin and tangential migration of guidepost neurons in the lateral olfactory tract. J Neurosci 20:5802–5812

    CAS  PubMed  Google Scholar 

  • Tuttle R, Nakagawa Y, Johnson JE, O’Leary DD (1999) Defects in thalamocortical axon pathfinding correlate with altered cell domains in Mash-1-deficient mice. Development 126:1903–1916

    CAS  PubMed  Google Scholar 

  • Ulfig N, Setzer M, Bohl J (1998) Transient architectonic features in the basolateral amygdala of the human fetal brain. Acta Anat 163:99–112

    Article  CAS  Google Scholar 

  • Ulfig N, Setzer M, Bohl J (1999) Distribution of GAP-43-immunoreactive structures in the human fetal amygdala. Eur J Histochem 43:19–28

    CAS  PubMed  Google Scholar 

  • Ulfig N (2002) The ganglionic eminence – a putative intermediate target of amygdaloid connections. Dev Brain Res 139:313–318

    Article  CAS  Google Scholar 

  • Wahlsten D (1981) Prenatal schedule of appearance of mouse brain commissures. Brain Res 227:461–473

    CAS  PubMed  Google Scholar 

  • Yuasa S, Kawamura K, Kuwano R, Ono K (1996) Neuron-glia interrelations during migration of Purkinje cells in the mouse embryonic cerebellum. Int J Dev Neurosci 14:429–438

    Article  CAS  PubMed  Google Scholar 

  • Yuasa S, Kitoh J, Kawamura K (1994) Interactions between growing thalamocortical afferent axons and the neocortical primordium in normal and reeler mutant mice. Anat Embryol 190:137–154

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by research grants to S.Y. from the Ministry of Health, Labor and Welfare of Japan, the Ministry of Education, Culture, Sports, Science and Technology of Japan, and Futaba Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Aizawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aizawa, H., Sato, Y., Maekawa, M. et al. Development of the amygdalohypothalamic projection in the mouse embryonic forebrain. Anat Embryol 208, 249–264 (2004). https://doi.org/10.1007/s00429-004-0399-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-004-0399-9

Keywords

Navigation