Skip to main content

Advertisement

Log in

Runx2-deficient mice lack mandibular condylar cartilage and have deformed Meckel’s cartilage

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

Runx2 (runt-related transcription factor 2) deficient mice lacked the mandibular condylar cartilage and the mandibular bone. The anlage of the condylar process consisted of mesenchymal condensation, which expressed Type I collagen mRNA and alkaline phosphatase activity, but not Type II collagen and aggrecan mRNAs. Therefore, the differentiation of the mandibular condylar cartilage stopped at the preosteoblast (skeletoblast) stage. The lateral pterygoid muscle was attached to this anlage, and relatively abundant mesenchymal condensations were also formed at the muscle-attaching sites, e.g. the anlage of the mandibular body, the angular and coronoid processes. Three-dimensional reconstruction models showed that each mesenchymal condensation was connected to one another, and roughly outlined the shape of the mandible. Meckel’s cartilage in the Runx2-deficient mice had two ectopic cartilaginous processes to which the digastric and myohyoid muscles were attached. These findings indicate that Runx2 is essential for the formation of the mandibular condylar cartilage, as well as for normal development of Meckel’s cartilage and that muscle tissues influence mandible morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–m
Fig. 3
Fig. 4a, b

Similar content being viewed by others

References

  • Åberg T, Cavender A, Gaikwad JS, Bronckers ALJJ, Wang X, Waltimo-Sirén J, Thesleff I, D’Souza RN (2004) Phenotypic changes in dentition of runx2 homozygote-null mutamt mice. J Histochem Cytochem 52:131–139

    PubMed  Google Scholar 

  • Akiyama H, Chaboissier M-C, Martin JF, Schedl A, de Crombrugghe B (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16:2813–2828

    Article  CAS  PubMed  Google Scholar 

  • Beresford WA (ed) (1981) Chondroid bone, secondary cartilage and metaplasia. Urban & Schwarzenberg, Baltimore, pp 23–65

  • D’Souza RN, Åberg T, Gaikwad J, Cavender A, Owen M, Karsenty G, Thesleff I (1999) Cbfa1 is required for epithelial-mesenchymal interaction regulating tooth development in mice. Development 126:2911–2920

    CAS  PubMed  Google Scholar 

  • Enlow DH (1982) Handbook of facial growth, 2nd edn. Saunders, Philadelphia, pp 276–282

  • Enomoto H, Enomoto-Iwamoto M, Iwamoto M, Nomura S, Himeno M, Kitamura Y, Kishimoto T, Komori T (2000) Cbfa1 is a positive regulatory factor in chondrocyte maturation. J Biol Chem 275:8695–8702

    Article  CAS  PubMed  Google Scholar 

  • Fukada K, Shibata S, Suzuki S, Ohya K, Kuroda T (1999) In situ hybridisation study of type I, II, X collagens and aggrecan mRNAs in the developing condylar cartilage of fetal mouse mandible. J Anat 195:321–329

    Article  CAS  PubMed  Google Scholar 

  • Hoshi K, Komori T, Ozawa H (1999) Morphological characterization of skeletal cells in cbfa1-deficient mice. Bone 25:639–651

    Article  CAS  PubMed  Google Scholar 

  • Inada M, Yasui T, Nomura S, Yamaguchi A, Miyake S, Deguchi K, Himeno M, Sato M, Yamagiwa H, Kimura T, Yasui N, Ochi T, Endo N, Kitamura Y, Kishimoto T, Komori T (1999) Maturational disturbance of chondrocytes in cbfa1-deficient mice. Dev Dyn 214:279–290

    Article  CAS  PubMed  Google Scholar 

  • Kim IS, Otto F, Zabel B, Mundlos S (1999) Regulation of chondrocyte differentiation by Cbfa1. Mech Dev 80:159–70

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Gao Y-H, Ueta C, Yamagichi A, Komori T (2000) Multilineage differentiation of cbfa1-deficient calvarial cells in vitro. Biochem Biophys Res Com 273:630–636

    Article  CAS  PubMed  Google Scholar 

  • Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao Y-H, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    CAS  PubMed  Google Scholar 

  • McLeod MJ (1980) Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S. Teratology 22:299–301

    CAS  PubMed  Google Scholar 

  • Miyake T, Cameron AM, Hall BK (1997) Stage-specific expression patterns of alkaline phosphatase during development of the first arch skeleton in inbred C57BL/6 mouse embryos. J Anat 190:239–260

    Article  CAS  PubMed  Google Scholar 

  • Mori-Akiyama Y, Akiyama H, Rowitch DH, de Crombrugghe B (2003) Sox9 is required for determination of chondrogenic cell linege in the cranial neural crest. Proc Nat Aca Sci 100:9360–9365

    Article  CAS  Google Scholar 

  • Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 8:17–29

    Article  Google Scholar 

  • Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GWH, Beddington RSP, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771

    CAS  PubMed  Google Scholar 

  • Shibata S, Suzuki S, Tengan T, Ishii M, Kuroda T (1996) A histological study of the developing condylar cartilage of the fetal mouse mandible using coronal sections. Arch Oral Biol 41:47–54

    Article  CAS  PubMed  Google Scholar 

  • Shibata S, Fukada K, Suzuki S, Yamashita Y (1997) Immunohistochemistry of collagen types II and X, and enzyme-histochemistry of alkaline phosphatase in the developing condylar cartilage of the fetal mouse mandible. J Anat 191:561–570

    Article  CAS  PubMed  Google Scholar 

  • Shibata S, Suda N, Yamazaki K, Kuroda T, Beck F, Senior PV, Hammond VE (2000) Mandibular deformities in parathyroid hormone-related protein (PTHrP) deficient mice: possible involvement of masseter muscle. Anat Embryol 202:85–93

    Article  CAS  PubMed  Google Scholar 

  • Shibata S, Fukada K, Suzuki S, Ogawa T, Yamashita Y (2002) In situ hybridization and immunohistochemistry of bone sialoprotein and secreted phosphoprotein 1 (osteopontin) in the developing mouse mandibular condylar cartilage compared with limb bud cartilage. J Anat 200:309–320

    Article  CAS  PubMed  Google Scholar 

  • Shibata S, Suda N, Fukada K, Ohyama K, Yamashita Y, Hammond VE (2003A) Mandibular coronoid process in parathyroid hormone-related protein-deficient mice shows ectopic cartilage formation accompanied by abnormal bone modeling. Anat Embryol (Berl) 207:35–44

    Google Scholar 

  • Shibata S, Fukada K, Imai H, Abe T, Yamashita Y (2003B) In situ Hybridization and lmmunohistochemistry of versican, aggrecan, and link protein and histochemistry of hyaluronan in the developing mouse limb bud cartilage. J Anat 203:425–432

    Article  CAS  PubMed  Google Scholar 

  • Silbermann M, Reddi AH, Hand AR, Leapman RD, von der Mark K, Franzen A (1987) Further characterization of the extracellular matrix in the mandibular condyle in neonatal mice. J Anat 151:169–188

    CAS  PubMed  Google Scholar 

  • Takeda S, Bonnamy JP, Owen MJ, Ducy P, Karsenty G (2001) Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev 15:467–481

    Article  CAS  PubMed  Google Scholar 

  • Ueta C, Iwamoto M, Kanatani N, Yoshida C, Liu Y, Enomoto-Iwamoto M, Ohmori T, Enomoto H, Nakata K, Takada K, Kurisu K, Komori T (2001) Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes. J Cell Biol 153:87–99

    Article  CAS  PubMed  Google Scholar 

  • Vinkka-Puhakka H, Thesleff I (1993) Initiation of secondary cartilage in the mandible of the syrian hamster in the absence of muscle function. Arch Oral Biol 38:49–54

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by Grant-in-Aid for Scientific Research (No. 12671762) from Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shibata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibata, S., Suda, N., Yoda, S. et al. Runx2-deficient mice lack mandibular condylar cartilage and have deformed Meckel’s cartilage. Anat Embryol 208, 273–280 (2004). https://doi.org/10.1007/s00429-004-0393-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-004-0393-2

Keywords

Navigation